
Practical Reconstruction and Hardware-Accelerated Direct
Volume Rendering on Body-Centered Cubic Grids

Oliver Mattausch∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

In volume visualization, the Cartesian grid is by far the
most popular type of grid because it is convenient to han-
dle. But it requires 29.3% more samples than the Body-
Centered Cubic grid. In order to convince people used
to Cartesian grids for years of the advantages of Body-
Centered Cubic grids, we must prove their usability in
many different volume rendering algorithms. Therefore
we introduce several practical reconstruction schemes on
Body-Centered Cubic grids, which are very general and
can be used in a number of applications and tasks.

Together with the development of powerful and flex-
ible consumer graphics hardware, interactive hardware-
accelerated volume rendering algorithms gain popularity.
Rendering performance becomes a big issue, which can
be a strong argument in favour of Body-Centered Cubic
grids. We adapted the projected tetrahedra algorithm to
Body-Centered Cubic grids, which is one of the most pop-
ular volume rendering approaches exploiting hardware-
acceleration. At least partly we succeeded in achiev-
ing a performance gain on our new grid and further pro-
duced some impressive rendering results comparable to
the Cartesian grid version.

Keywords: hardware acceleration, alternative grids, ray-
casting, cell projection, hexagonal, sphere packing

1 Introduction

The Cartesian (CC) grid is the dominant type of sampling
grid in volume visualization. Although we know from sig-
nal theory that it is not optimal in terms of storage effi-
ciency [18]. To find the optimal sampling grid, we have
to solve the dual problem of packing the replicated spectra
in the frequency domain as closely as possible so that they
do not overlap. In volume rendering, it is assumed that we
are dealing with isotropic, band-limited scalar functions
which have spherical spectra. Our problem is equivalent
to the famous sphere packing problem [14]. There is no
general solution to this problem yet, but fortunately for

∗matt@cg.tuwien.ac.at

2
CC grid BCC grid

2.0

3/2

1

Figure 1: CC and BCC cells in relative proportions (image
redrawn from Theußl et al. [17]).

our purpose some optimal packing schemes among regu-
lar grids in 2D and 3D are known.

In 3D the Hexagonal Close Packing (HCP) grid and the
Face-Centered Cubic (FCC) grid are optimal sphere pack-
ings. The dual of the HCP grid in the spatial domain is
again a HCP grid, the dual of the FCC grid is the Body-
Centered Cubic (BCC) grid. The BCC grid looks like a CC
grid with an additional sample point in the middle of each
cubic cell (see figure 1). Both schemes require 29.3% less
samples than the CC grid to store the same amount of in-
formation [18]. The BCC grid is easier to handle than the
HCP grid, because it can be described by a sampling ma-
trix as opposed to the HCP grid, and has some convenient
properties that can be exploited for volume rendering. The
BCC grid can be seen as

• stack of 2D CC grids, where the odd-numbered
planes are translated by half a unit in both dimensions
with respect to the even-numbered planes.

• two interleaved 3D CC grids, where one grid (de-
noted as secondary grid) is translated by half a cell
spacing in all three axes relatively to the other grid
(denoted as primary grid).

• sheared and scaled CC grid.

• tetrahedral mesh, which is uniquely defined by the
Delauney complex [2].

Our goal is to show to the volume visualization commu-
nity that the BCC grid is an alternative to the CC grid in
practice. Therefore we must first proof it’s usability in dif-
ferent types of volume rendering algorithms. Furthermore,



we have to achieve a performance gain over most compa-
rable rendering approaches on the CC grid due to the re-
duced memory requirements, with equal or only slightly
reduced image quality. In chapter 3, we introduce some
practical schemes for reconstruction in a BCC grid.

An evolving field of volume visualization deals with ex-
ploiting the power of flexible consumer graphics hardware
for interactive or near-interactive volume rendering. Hard-
ware acceleration could increase the popularity of tradi-
tionally slow direct volume rendering for usage in time-
critical applications as well. The potential performance
gain of BCC grids is therefore even more desirable in
such hardware-based approaches. An important hardware-
accelerated method is the projected tetrahedra algorithm.
In chapter 4, we present a speed-optimized implementa-
tion of the algorithm for the BCC grid.

2 Previous work

Volume rendering can be classified into image-order al-
gorithms like raytracing and raycasting [7], and object-
order algorithms like splatting [20], cell projection [13],
and texture-based volume rendering [1]. A hybrid method
is the performance-optimized shear-warp algorithm intro-
duced by Lacroute et al. [6].

The projected tetrahedra algorithm proposed by Shirley
et al. [13] exploits hardware-acceleration for the render-
ing of any type of tetrahedral grid. Accuracy of the trans-
parency calculation was improved by Stein et al. [15]. Ac-
curate integration of arbitrary transfer functions is possi-
ble by using the pre-integration technique introduced by
Röttger et al. [11].

Theußl et al. [18] first proposed the usage of BCC grids
for direct volume rendering. They implemented Westover
style splatting [20] on the BCC grid, which was extended
to the 4th dimension for time-varying data by Neophy-
tou and Mueller [9]. The shear-warp algorithm was ex-
tended to support BCC rendering by Sweeney et al. [16].
Ibáñez et al. [5] used a generalization of the Bresenham
algorithm for raycasting on the BCC grid, but they did not
present any details about the used interpolation. Recon-
struction schemes for high-quality raycasting on the BCC
grid were proposed by Theußl et al. [17]. In chapter 3,
we present their methods in detail. Dornhofer modified
Fourier Domain Volume Rendering (FDVR) for use on a
BCC grid [4]. Iso-surface reconstruction on the tetrahe-
dral mesh defined by a BCC grid was proposed by Chan
and Purisma [3]. To cope with the large number of cre-
ated triangles on such a mesh, Carr et al. [2] investigated
and compared the marching cubes variants marching tetra-
hedra, marching octahedra, and marching hexahedra for
BCC grid iso-surface reconstruction.

For a more detailed description of the methods pre-
sented in this work, refer to the diploma thesis of Mat-
tausch [8]. In this thesis, the adaption of other hardware-
accelerated approaches (e.g., 2D and 3D texture-based

planes
(2D CC grids)

resample points

ray

Figure 2: Bilinear interpolation in the 2D CC grid planes,
which are most perpendicular to the viewing direction (im-
age taken from Theußl et al. [17]).

volume rendering) to the BCC grid is also described.

3 Reconstruction Schemes

We developed some general strategies for practical recon-
struction on the BCC grid. The reconstruction schemes
were integrated in a raycasting system for high-quality
rendering. However, they can be used in other BCC ren-
dering algorithms which need an interpolation between
sample positions. Some of the reconstruction schemes are
optimized for speed, others for rendering quality, while all
preserve reasonable complexity.

There is one restriction to our methods. The quality of
some techniques depends on the current view direction. As
a consequence, these methods are only suited for applica-
tions with a defined view direction, like volume rendering.
They are not suited for view-independent applications, like
segmentation.

3.1 Bilinear Interpolation

Bilinear interpolation operates directly on the 2D CC grid
planes. On the BCC grid, every second plane is translated
by half a unit. If we use bilinear interpolation for raycast-
ing, we must ensure that the entry point of the ray is also on
a plane [19]. From the three stacks of resampling planes,
we choose the planes most perpendicular to the current
view direction (shown in figure 2). On the BCC grid we
get a higher sample frequency than on the CC grid, be-
cause the planes are closer together by a factor of

√
2. On

the other hand, we lose information in the planes, because
they consist of half the number of samples than on the CC
grid.

To further halve the sample distance, we can apply a
simplified trilinear interpolation directly in between two
planes [19]. This interpolation is a specialized version of
the sheared trilinear interpolation from section 3.4.

3.2 Bilinear plus Spatial Interpolation

Bilinear interpolation can be extended to a real trilinear
interpolation on arbitrary resampling positions. This can



Si+1

Si

2/2

(2D CC grids)

resample points

planes
S

plane i+1

plane i
α

ray

α

Figure 3: Bilinear plus spatial interpolation shown in 2D.
After we bilinearly interpolate the values from the planes
(Si and Si+1), a linear interpolation with α as weight
yields the final scalar value Sα.

Figure 4: The Delaunay tetrahedralization of the BCC
grid. A tetrahedron is determined by two samples from
the primary (secondary) grid (black dots) together with
two adjacent samples from the secondary (primary) grid
(white dots). Image taken from Theußl et al. [17].

be achieved with an additional spatial interpolation of two
bilinearly interpolated density values on the adjacent 2D
CC grid planes. Therefore we refer to this reconstruction
scheme as bilinear plus spatial interpolation. The situation
is depicted in figure 3, where the interpolated values from
the upper and lower plane are denoted as Si and Si+1, and
α refers to the spatial distance from the planes. We calcu-
late the final density value Sα like the following:

Sα = (

√
2

2
− α)Si + αSi+1 for 0 < α <

√
2

2
(1)

Similar to bilinear interpolation, we choose the stack
of CC grid planes that is most perpendicular to the actual
view direction. This method results in an interpolation in
a sheared cubic cell, where the shear directions of the cells
are determined by the resampling location. The grey areas
in figure 3 show the cells in 2D.

3.3 Barycentric Interpolation

Barycentric interpolation operates on the tetrahedral mesh
that is defined by the BCC grid. The barycentric coor-
dinates are calculated, and used for an interpolation be-
tween the tetrahedron vertices. The interpolation between
the vertices is piece-wise linear and therefore fast, but of
limited quality. Additional computations must be done to
find the current tetrahedron that contains the resampling
point, and to calculate the barycentric coordinates:

α

c, d c, d

2/2

resample point

a, b
ray

interpolated values

ray
a, b

resample point2D CC grid planes

α

Figure 5: 2D visualization of sheared trilinear interpola-
tion in the BCC grid. The linearly interpolated values a, b,
c, d are used for a bilinear interpolation.

1. Find the tetrahedron where the resampling point is
located in. First we determine the corresponding oc-
tant of the cell in the primary (secondary) grid using
three comparisons. We need some more comparisons
(x greater or smaller y, x greater or smaller z, and y

greater or smaller z) to find the current tetrahedron.
The situation is visualized in figure 4.

2. Compute the barycentric coordinates. This is done
by transforming the resampling point into a coordi-
nate system, where one vertex of the tetrahedron is in
the origin, and the others are in unit distance on the x,
y, and z axis. The barycentric coordinates are equiv-
alent to the new location of the resampling point. Af-
ter translation to the origin, only 12 different types of
tetrahedra exist, thus the transformation matrices can
be precomputed and stored in a table.

3.4 Sheared Trilinear Interpolation

The BCC grid can be seen as sheared and scaled CC grid,
where we operate on sheared cubic cells. We can use a
special kind of trilinear interpolation in these cells. which
we denote as sheared trilinear interpolation. A 2D visual-
ization is depicted in figure 5. The cells are sheared along
two axes that span 2D CC grid planes. In figure 5, these
are the planes made up by the axes pointing to the right
and (not seen in the 2D visualization) into the spatial di-
mension. We denote these planes as shear planes. First we
apply linear interpolations along the four short edges of a
particular sheared cubic cell. Again in figure 5, the result-
ing interpolated values are referred as a, b, c, and d. The
weights used in the linear interpolations are determined by
the distances α and

√

2

2
− α from the adjacent 2D CC grid

planes. The scalar values a, b, c, and d can then be used
for a bilinear interpolation of the final density value. In
this approach, we can freely choose the shear planes and
the shear directions of the cells. We made following con-
siderations about the proper selection of these parameters:

• As shear planes, we choose the planes which are
most perpendicular to the actual view direction. This



class 1a class 1b class 2

Figure 6: Basic classes for the decomposition of a tetrahe-
dron. The circle refers to the ”thick” vertex.

is closely connected to the bilinear reconstruction
scheme from section 3.1. Figure 5 illustrates this ap-
proach in 2D.

• Next, we also choose the shear directions depending
on the viewing ray direction. The cells are sheared
either into the positive or negative directions, in order
to assure that the sheared cell borders are as parallel
as possible to the ray. This assures that the ray will
pass through the sheared cell as similar as possible
as it would pass through the original cubic cells. As
we can see in the right image of figure 5, the shear
directions towards the positive axis would be chosen,
if the viewing ray pointed slightly towards the right.

4 Projected Tetrahedra Method

The projected tetrahedra algorithm [13] is a simple and
flexible algorithm which uses the properties of a tetrahe-
dral cell. The graphics hardware is exploited to interpolate
the scalar function between the vertices. The method con-
sists of the following steps:

1. Decompose the volume into a tetrahedral mesh. Den-
sity values are stored at each vertex. The scalar func-
tion is assumed to be a linear combination of the ver-
tex values.

2. Depth sort the tetrahedra.

3. Classify tetrahedra and decomposite into triangles ac-
cording to the projected profile. The two main cases
are shown in figure 6.

4. Determine color and opacity values at the triangle
vertices using ray integration at the ”thick” vertex.

5. Rasterize the triangles.

Implementation on the BCC grid is straightforward as
the tetrahedral mesh is defined by the Delauney tetrahe-
dralization (refer to figure 4). We concentrated on the ex-
ploitation of the regular grid structure to speed-optimize
the projected tetrahedra method for BCC grids.

4.1 Back-to-Front Traversal

On regular grid structures like the CC and BCC grid, we
can do the depth-sort step implicitly with a back-to-front
traversal of the sample points. The tetrahedra are created
on the fly. For this purpose, we define a cell structure

x

z

traversed sample

primary grid

secondary grid

Figure 7: Traversal step of the projected tetrahedra algo-
rithm on the BCC grid (in 2D). In each step three octahedra
(shown in grey, the one in the y axis outlined with dotted
lines) are created with adjacent samples in the directions
of the positive x, y, and z axis, then tetrahedralized.

defined by a BCC grid
Structure for a tetrahedral mesh

on a rectilinear grid
Original structure for splatting 

visible complex (primary grid)

invisible complex (primary grid)

invisible complex (secondary grid)

virtual complex

visible voxel

invisible voxel

virtual voxel

Figure 8: The adjacency structure in 2D. The structure
is encapsulated by a box of virtual voxels (traversal com-
plexes) which are only created on demand.

that contains all tetrahedra processed in one traversal step,
which we denote as traversal complex. This traversal com-
plex is trivially given by a cube on the CC grid. On the
BCC grid, it can be verified that we cover all tetrahedra of
the grid by traversing only the primary grid, and tetrahe-
dralizing the three octahedra spanned between the current
sample, the adjacent samples of the primary grid in the
positive x, y, and z axis (the black dots in figure 4) and
four samples from the secondary grid (the white dots in
figure 4). A single traversal step is shown in figure 7. For
depth-ordering octahedra, back-to-front traversal suffices.
Thus we process 12 tetrahedra per traversal step (4 per oc-
tahedron). Depth-ordering the tetrahedra inside a traversal
complex is trivial. It can be done in a pre-processing step
for orthogonal projection, because we have only 12 differ-
ent types of tetrahedra on the BCC grid.

4.2 Adjacency Structure for Tetrahedral
Grids

To further speed up the traversal, we adapted an adjacency
data structure proposed by Orchard et al. [10] to store the
tetrahedral mesh. This structure was originally used to ac-
celerate splatting in rectilinear grids. It stores only visi-



ble voxels (i.e., the opacity exceeds a certain threshold).
Together with a voxel six pointers to the adjacent visible
voxels in all axes are stored, allowing to skip transparent
voxels completely. A 2D version of the structure is shown
in the left image of figure 8. To enable skipping of larger
volume regions, a hierarchy of three types of virtual vox-
els is introduced (denoted as box corner, box edge, and
box face voxels [10]), which encapsulate the structure like
a box. Box face voxels are stored on each end of visible
(i.e., at least one of the voxels is visible) voxel scanlines.
Box edge voxels are capping both ends of visible box face
scanlines, and visible box edge scanlines are capped by
two box corner voxels.

To use the data structure for a tetrahedral mesh, we store
traversal complexes instead of voxels. The new structure
is depicted in the right image of figure 8. A traversal com-
plexes is marked as visible if at least one of the tetrahedra
inside is visible. For each tetrahedron of a visible traversal
complex, we must explicitly check for visibility. Fortu-
nately, the visibility information can be efficiently stored
together with a traversal complex as a checksum. Each of
the tetrahedra is given an unique ID number. The check-
sum is the sum of the ID numbers of all visible tetrahedra.
Hence visibility testing is easily done during traversal by
masking this checksum with the unique tetrahedron ID.

4.3 Improving the Rendering Quality

The original projected tetrahedra algorithm assumes a lin-
ear color and transparency variation inside a tetrahedron.
For linear transfer functions, we can calculate the correct
transparency 1 − exp(−τl) by applying 2D exponential
transparency textures [15]. The extinction coefficient τ

and the segment length l are taken as texture coordinates.
For abitrary transfer functions, the pre-integration tech-

nique [11] allows accurate renderings without sacrificing
hardware acceleration. A 3D texture is used to store pre-
integrated ray segments, taking the entry point sf , the exit
point sb and the segment length l of a ray as parameters.
Pre-integration can be seen as an integration of the transfer
function separate from the integration of the scalar field.

4.4 Shading Issues

Directional shading is a very important issue in volume
rendering, because it enhances the spatial perception and
provides useful cues about the shape of the rendered ob-
ject. For introducing directional shading into the original
projected tetrahedra algorithm, we store the normals with
a vertex, and apply standard OpenGL Gouraud shading.

It is difficult to use directional shading in combination
with pre-integration, because only three parameters can be
used as indices into a 3D texture. We introduce two ap-
proaches to combine pre-integration and shading, which
we denote as pre-integration and Gouraud shading, and
pre-integration and Phong shading. However, both ap-

Dataset CC Dimension BCC Dimension

Cube 40 × 40 × 40 28 × 28 × 56
Fuel 64 × 64 × 64 45 × 45 × 90
Hipiph 64 × 64 × 64 45 × 45 × 90
Device 128 × 128 × 64 91 × 91 × 91

Table 1: The datasets used in our experiments.

0

2

4

6

8

10

12

tril (CC) bil (BCC) bilspat (BCC) bary (BCC) shtril (BCC)

se
co

nd
s

Reconstruction scheme

Raycasting Timings

Device
Fuel

Cube

Figure 9: Raycasting timings for different interpolators.
”tril” refers to trilinear, ”bil” to bilinear, ”bilspat” to bilin-
ear plus spatial, and ”shtril” to sheared trilinear interpola-
tion.

proaches do not insert shading information into the pre-
integration process.

To combine pre-integration with Gouraud shading, we
set the vertex color to white and apply the standard
OpenGL Gouraud shading. The resulting grey value rep-
resents the Gouraud shaded light intensity in a pixel and
is then modulated with the 3D pre-integration texture. To
preserve the highlights, we must assure that the specular
output is added after the modulation.

To use pre-integration and Phong shading, we store the
normals in the color portion, in order to get the interpo-
lated gradients in the pixel shaders. The gradient and the
output texel of the pre-integration texture can be employed
for the calculation of the Phong shading equation. If there
is no square root operation available in the pixel shaders,
we can either use a (rather slow) cube map for normaliza-
tion, or use an approximation formula that is reasonable
accurate under the given conditions [12].

5 Results

The datasets used in our experiments are listed in table 1.
The Fuel and the Hipiph datasets have been resampled
from the CC to the BCC grid format, which is a source
for resampling errors. The Device dataset is scanned and
sampled on both CC and BCC grid separately. We tested
the reconstruction schemes in a raycasting system.

Figure 11 shows renderings of the Fuel dataset on the
BCC grid. The bilinear interpolation (left image) reveals
slicing artifacts caused by undersampling. The artifacts
disappear when using the bilinear plus spatial interpolation



30
35
40
45
50
55
60
65
70
75
80

linear exponential Gouraud Phong

m
ill

is
ec

on
ds

Rendering Type

Projected Tetrahedra Algorithm Timings

Fuel BCC
Fuel CC

Hipiph BCC
Hipiph CC

Figure 10: Timings for the projected tetrahedra algorithm.
”Linear” refers to the linear transparency variation in the
original projected tetrahedra method. ”exponential” refers
to the exponential transparency textures, ”Phong” and
”Gouraud” to the shading techniques for pre-integration.

(right image).
In figure 12, comparisons of different reconstruction

schemes on the Device dataset are depicted. Trilinear in-
terpolation on the CC grid (the images in the leftmost col-
umn) produces the most detailed renderings. Barycentric
interpolation (the images in the middle column) suffers
from artifacts clearly visible in the magnified region. Us-
ing sheared trilinear interpolation (the images in the right-
most column), no artifacts are visible, but some details are
also smoothed out. We can see some noise in the topmost
CC grid image, which is missing in the BCC grid render-
ings. This difference originates from the sampling process.

Rendering results of the projected tetrahedra algorithm
on the Fuel dataset are shown in figure 13. The CC grid
images are in the top row, the BCC grid images in the bot-
tom row. No major difference can be noticed between the
CC grid and the BCC grid renderings of the Fuel dataset.
A poor rendering quality is achieved with the exponential
transparency textures (the images in the leftmost column).
By employing pre-integration (the images in the middle
and rightmost column), the rendering quality improves
significantly. Together with the pre-integration method,
we used our Gouraud shading technique (the images in
the middle column), and our Phong shading technique (the
images in the rightmost column). The Gouraud shading
looks slightly duller than the Phong shading approach, es-
pecially in the highlight regions.

In figure 9, timings of our reconstruction schemes
are shown. Clearly, bilinear interpolation is the fastest
scheme. Next comes trilinear interpolation on the CC
grid. Sheared trilinear and bilinear plus spatial interpola-
tion have similar rendering times. Both are slightly slower
than trilinear interpolation on the CC grid. Because of
the required additional computation steps (refer to sec-
tion 3.3), barycentric interpolation performs worse than
the higher quality methods on the BCC grid.

Figure 10 shows timings of the projected tetrahedra al-
gorithm, equally optimized on both the BCC grid and the

Figure 11: Raycasting on the Fuel dataset for the BCC
grid. Bilinear interpolation (left), and bilinear plus spatial
interpolation (right).

CC grid. For all tested datasets, the algorithm performs
better on the BCC grid volume. Despite using tradition-
ally slow 3D textures, pre-integration is faster than both
the original projected tetrahedra algorithm, and the ex-
ponential transparency textures. This is because the bot-
tleneck of the algorithm are the per-tetrahedron software
computations, which are slightly less complex for the pre-
integration approach.

6 Conclusions and Future Work

We presented several practical reconstruction strategies
on the BCC grid and tested them in a raycasting sys-
tem. Among them are fast methods with reasonable qual-
ity (e.g., bilinear interpolation), and higher quality meth-
ods comparable to the CC grid trilinear interpolation (e.g.,
bilinear plus spatial, and sheared trilinear interpolation).
We achieved the best results when using the sheared trilin-
ear interpolation, or the bilinear plus spatial interpolation.
Both schemes are slightly more complex than trilinear in-
terpolation on the CC grid.

Furthermore, we presented a speed-optimized version
of an important hardware-accelerated algorithm (i.e., the
projected tetrahedra method) for the BCC grid, by exploit-
ing the regular grid structure and orthogonal projection.
We adapted a 3D adjacency data structure originally used
for splatting to store a tetrahedral mesh defined by a BCC
grid (or alternatively derived from the decomposition of a
CC grid). This structure allows fast traversal by skipping
large regions of transparent tetrahedra.

The tetrahedral mesh defined by a BCC grid consists
of a smaller number of tetrahedra than any decomposition
of an equivalent CC grid. The smaller number of tetra-
hedra contributes to a noticeable better performance of
the projected tetrahedra algorithm on the BCC grid. This
is caused by the fact that the algorithm is a pure object-
order technique, hence the number of primitives is respon-
sible for the performance. To produce accurate render-
ings with projected tetrahedra methods, the pre-integration
technique must be used.

Using our approaches, we achieved some impressive



rendering results on the BCC grid. However, we observed
a reduced rendering quality on some of our datasets like
the Device dataset, regardless of the used method. The
renderings are either not equally sharp and detailed, or oth-
erwise have a rather rough appearance.

To find the reason for this quality difference, we must
intensively investigate the frequency domain. We devel-
oped reconstruction schemes that are very different from
the ideal reconstruction filter (i.e., the sinc filter). This is
a possible explanation for the BCC grid theory to fail in
practice. As a consequence, we should investigate higher-
order reconstruction filters for rendering on the BCC grid.

7 Acknowledgments

Thanks to Thomas Theußl, Eduard Gröller, and Markus
Hadwiger for their support on this work, and to Anna Vi-
lanova for providing us useful datasets. For further infor-
mation see http://www.cg.tuwien.ac.at/∼matt/.

References

[1] B. Cabral, N. Cam, and J. Foran. Accelerated volume
rendering and tomographic reconstruction using tex-
ture mapping hardware. In Proceedings of the 1994
Symposium on Volume Visualization, pages 91–98.
ACM SIGGRAPH, October 1994.

[2] H. Carr, T. Theußl, and T. Möller. Isosurfaces on op-
timal regular samples. In Proceedings of the 2003
Joint Eurographics - IEEE TCVG Symposium on Vi-
sualization, pages 39–48, 2003.

[3] S. Chan and E. Purisima. A new tetrahedral tessela-
tion scheme for isosurface generation. In Computers
& Graphics, volume 22(1), pages 83–90, February
1998.

[4] A. Dornhofer. A discrete fourier transform pair for
arbitrary sampling geometries with applications to
frequency domain volume rendering on the body-
centered cubic lattice. Master’s thesis, Vienna Uni-
versity of Technology, 2003.

[5] L. Ibáñez, C.Hamitouche, and C.Roux. Ray cast-
ing in the BCC grid applied to 3D medical image
visualization. Proceedings of the 20th Annual In-
ternational Conference of the IEEE Engineering in
Medicine and Biology Society, 20(2):548–551, 1998.

[6] P. Lacroute and M. Levoy. Fast volume rendering
using a shear-warp factorization of the viewing trans-
formation. In Proceedings of SIGGRAPH ’94, pages
451–458. ACM SIGGRAPH, July 1994.

[7] M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applications,
8(3):29–37, May 1988.

[8] O. Mattausch. Practical reconstruction schemes
and hardware-accelerated direct volume rendering on
body-centered cubic grids. Master’s thesis, Vienna
University of Technology, 2004.

[9] N. Neophytou and K. Mueller. Space-time points:
4d splatting on efficient grids. In Proceedings of
the 2002 IEEE Symposium on Volume Visualization,
pages 97–106. IEEE Press, 2002.

[10] J. Orchard and T. Möller. Accelerated splatting using
a 3d adjacency data structure. In GI 2001, pages 191–
200, June 2001.

[11] S. Röttger, M. Kraus, and T. Ertl. Hardware-
accelerated volume and isosurface rendering based
on cell-projection. In Proceedings of the IEEE Visu-
alization ’00 (Vis ‘00), pages 109–116. IEEE Com-
puter Society Press, 2000.

[12] G. Schröcker. Hardware accelerated per-pixel shad-
ing. In Proceedings of the CESCG, pages 233 – 246,
2002.

[13] P. Shirley and A. Tuchman. A polygonal approxima-
tion to direct scalar volume rendering. In Computer
Graphics (San Diego Workshop on Volume Visualiza-
tion), pages 63–70, November 1990.

[14] N. Sloane. The sphere packing problem. In ICM:
Proceedings of the International Congress of Mathe-
maticians, pages 387–396, 1998.

[15] C. Stein, B. Becker, and N. Max. Sorting and hard-
ware assisted rendering for volume visualization. In
Proceedings of the 1994 Symposium on Volume Visu-
alization, pages 83–89. ACM Press, 1994.

[16] J. Sweeney and K. Mueller. Shear-warp deluxe: The
shear-warp algorithm revisited. In Proceedings of the
2002 Joint Eurographics - IEEE TCVG Symposium
on Visualization, pages 95–104, Barcelona, Spain,
May 2002.

[17] T. Theußl, O. Mattausch, T. Möller, and Meister E.
Gröller. Reconstruction schemes for high quality
raycasting of the body-centered cubic grid. Tech-
nical Report TR-186-2-02-11, Vienna University of
Technology, Institute for Computer Graphics and Al-
gorithms, December 2002.

[18] T. Theußl, T. Möller, and Meister E. Gröller. Opti-
mal regular volume sampling. In Proceedings of the
IEEE Visualization 2001, pages 91–98, 2001.

[19] M. Wan, A. Kaufman, and S. Bryson. Optimized in-
terpolation for volume ray casting. Journal of Graph-
ics Tools: JGT, 4(1):11–24, 1999.

[20] L. Westover. Footprint evaluation for volume render-
ing. In Proceedings of SIGGRAPH ’90, pages 367–
376. ACM SIGGRAPH, August 1990.



Figure 12: Raycasting on the Device dataset using different interpolators. A zoomed region is shown below each image.
From left to right column: trilinear on the CC grid, barycentric on the BCC grid, and sheared trilinear on the BCC grid.

Figure 13: The projected tetrahedra algorithm on the Fuel dataset. The CC grid is shown in the top row, the BCC grid in
the bottom row. From left to right column: exponential transparency textures, pre-integration and Gouraud shading, and
pre-integration and Phong shading.


