
Hardware generated shadows
Márton Szabó

Dept. of Control Engineering and Information Technology
Technical University of Budapest

Hungary

Abstract

Recent advances of graphical hardware enable

programmers to create more sophisticated looking real-

time anim ations. These animations require some

everyday, but not easily computable effects. As shadows

are crucial in human perception, they are one of the most

important effects. Since one of the most famous

comprehensive survey on shadow algorithms (Woo 1,

1990) a plenty of practical methods have been written.

My aim was to study some of these, which are well

known, and change them to satisfy the needs of the

programmable graphics hardware.

Keywords: Shadow, Soft Shadow, Hardware Shader

1 Introduction

Standing in shadow, or to see a piece of shadow moving

on the wall is an everyday phenomenon. However,

shadow rendering was not that obvious in real-time

graphics applications until now, because shadow casting

is a very resource demanding process.

This paper is divide d into two main parts. The first part

covers the description of some fast but physically not

plausible shadow computing procedures, called hard

shadows. I introduce the programmable graphics

hardware implementation of the Simple Stencil Shadows,

the Shadow Map, and Stencil Shadow Volumes

algorithms. In the second part I discuss some algorithms,

which can generate physically correct or approximate

shadows, called soft shadows. I introduce some

considerations on how to implement the Penumbra

Wedges algorithm on GPU, and what optimizations can

be done.

2 The programmable Graphics
Hardware

The programmable graphics hardware is an architecture

containing three processors. The first processor is the

CPU, the computers general processor. The two other

processors have unique instruction set, specialized on

graphical computations, like multiplying vectors,

matrices, etc. These are called the vertex shader, and the

pixel (fragment) shader. The vertex shader is responsible

for transforming the vertices into projection space, and

for the execution of per vertex operations. The pixel

shader colors the pixels one by one. The figure below

shows a simplified view of this architecture.

Figure 4.1 Architecture of the programmable graphics

hardware

3 Shadows in Computer Graphics

3.1 What is the shadow?

Shadow is a piece of surface, what light cannot or only

particularly can reach. We call these surfaces receivers.

Bodies that prevent the light to reach the receivers we

call occluders.

Researchers assign important role of shadows in

understanding:

• The position and size of the occluder

• The geometry of the occluder

• The geometry of the receiver

4 What Are Shadows Good For?

According to the observations above shadows play

important role in understanding geometry, so they should

not be neglected. One does not care about existing

shadows but everybody notices the lack of it.

Shadows bear much information about object geometry

and help to determine the relative distances between the

receiver and the occluder objects.

Vertex shader

Transform, and

per vertex

lighting

Vertices,

normal,

texture

coordinates

Pixel shader

Texturing,

coloring, and

per vertex

lighting

Pixel color

Textures

Interpolated values

Figure 4.1 Relative object positions. On the left we

cannot determine the position of the object

Figure 4.2 Shadow provide information about the

geometry of the occluder.

Figure 4.3 Shadows provide information about

receiver geometry

5 Hard Shadows

Hard shadows are produced by point light sources. In this

case, it is easy to decide whether a surface point is

occluded or not. If the surface point cannot see the light

source, it is in shadow. Hard shadows are not real but

easy to model and can be computed in real-time

applications.

5.1 Simple Stencil Shadows2

This is the simplest way to render shadows, however

the results are rarely satisfying. The algorithm works

only in case of planar receiver objects. To compute the

shadow of the object relative to the light source, we have

to transform all the points of the shadow casting object

into the plane of the receiver.

After the “projection”, we set every pixel of the object

black. Given the position of the light, and the receiver

plane, we can derive the transformation coefficient. We

apply the transformation in homogenous coordinates, and

finally complete the homogenous division.

• Position of the light:],,[
zyx

llll =
r

• The plane:

0)()(0 =−= rrnrS
rrrr

],,[CBAn =
r

0rnD
rr−= ,

• Let ? be the light source–plane distance. Then the

matrix that transforms the object into the receiver’s

plane is the following:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−
−−−−
−−−−

=

DDlDlDl

CClClCl

BBlBlBl

AAlAlAl

T

zyx

zyx

zyx

zyx

shadow

γ
γ

γ
γ

5.2 Implementation

The program is a very simple one. I used only a single

vertex shader. This shader gets the transformation matrix

as input, and transforms all the vertices into the plane of

the receiver. After transforming, it offsets the vertices a

bit for the light source, to ensure that the z values of the

shadow are in front of the receiver.

First we render the plane, with enabled stencil buffer.

Second we render the shadow, if we find positive stencil

values in the stencil buffer. This procedure ensures that

the shadow is cast only onto the receiver.

Figure 5.1 Simple Stencil Shadow screenshot

5.3 Simple Shadow Maps

The process to identify the shadowed areas is to identify

the visible points from the light source.

• The first step is to render the scene from the light

point of view, and store the depth values in a texture,

called shadow map. We will use this map when

rendering the final image.

• Run the standard z-buffer algorithm to eliminate the

invisible parts.

• After these we know the geometrical positions of the

objects seen in the pixels. If the distance betw een an

object and the light source is greater than the distance

stored in the light map, then the object is in shadow.

Else it is illuminated.

• If the part seen in the pixel is in shadow, we render it

using only the ambient light/color component.

It is possible to use non standard extensions to implement

shadow map with fixed function pipeline, like

GL_SGIX_SHADOW, and it is not too difficult to

implement it with shaders.

5.4 Shadow Map Implementation

To render the shadow map I used an offscreen buffer.

First of all the scene has to be rendered from the light

source. During rendering only the z values are stored. We

change the render target, now it is the screen buffer. The

vertex shader in my implementation is responsible for

transforming the vertices into pro jection space, and to

generate the input data for the pixel shader.

Figure 5.2 Shadow map implementation

An input needed is the world space z coordinates of the

objects in the scene. The vertex shader writes these

coordinates into a texture output register. The pixel

shader is responsible for setting the colour values of the

output pixels, and to decide whether a surface point is in

shadow or not. The pixel shader samples the shadow

map, and transforms the input coordinates from the

vertex shader into the basis of the light source. After that,

the comparison can be done.

5.5 Problems with Shadow Maps

The shadow map algorithm has some disadvantages.

First of all, the z-buffer is not very precise, so artifacts

may appear in self shadowing when surfaces get close to

each other. This artifact can be avoided by offsetting the

z values by a small bias.

The most disturbing problem is aliasing. If the light is far

away from the viewer, individual pixels may become

visible from the shadow map.

To avoid aliasing problems, a few methods were

introduced.

• Storing object identifiers in the shadow map.

• Using deep shadow maps
3
.

• Using adaptive shadow maps.

• Using perspective shadow maps
4
.

5.6 Stencil Shadow Volumes

The shadow volume algorithm was first introduced by

Crow, and Heidemann 5 created the first adaptation to

programmable graphics hardware. The procedure is

based on identifying the silhouette edges of the

occluders, then extruding it along the light direction to

form a shadow volume. Objects inside the shadow

volume are in shadow, the others are illuminated.

The shadow volume is calculated in the following steps:

• The first step is to find the objects silhouette viewed

from the light source. Edges shared by a triangle

facing the light, and another one facing the opposite

direction are worth to be kept.

• Then we form the shadow volume by extruding these

edges along the light direction. The extruded faces

are half planes. Together they define a closed volume

(not closed in infinity). To decide whether a point in

the scene is in shadow, we have to check if it is inside

the volume.

• When rendering, we have to count how many times a

ray from the viewpoint intersects the shadow volume.

Front facing shadow volume faces increment the

counter, while back facing faces decrement it. If the

final number is greater than zero, then the point is in

shadow.

Figure 5.3 Detecting silhouette edges

We can easily implement the counting with the help of

the stencil buffer. At the start of the rendering, the depth

test has to be enabled. We render the faces facing the

camera, increasing the stencil value by one at each face,

in the second pass we render the back faces,

decrementing the stencil value. Pixels that have positive

stencil value are in shadow. This technique is called z-

pass
7
.

The whole algorithm is the following:

• Render the scene only with ambient lighting.

• Compute the shadow volume, and render it to the

stencil buffer.

• Re-render the scene fully illuminated with stencil test,

only pixels which have zero stencil value are updated.

Figure 5.4 Z-pass algorithm.

5.7 Optimizing the Shadow Volume

The method does not support scenes, where the viewer

stands in shadow. After rendering, the stencil buffer

contains wrong values. Everitt
7
 suggested a method that

works in this case. This is called the z-fail that performs

the steps of z-fail in reversed order.

• Render the scene with ambient light only.

• Render the back faces, incrementing the stencil value,

if the depth test fails.

• Render the front faces, decrementing the stencil

value, if the depth test fails.

5.8 Shadow Volume Implementation

Computer graphics programmers usually like Crow’s

shadow volume algorithm, because it computes the

shadows in object space, so we have shadow information

for every pixel. No shadow mapping technique can

achieve high precision like that. Unfortunately, this

precision is not for free, because silhouette determination

puts high load on the processor, and the fillrate could

become a bottleneck because of the large shadow volume

surfaces. Another problem is that the data needed for

shadow generation is stored both on the graphics

hardware, and in the system memory, and the data have

to be synchronized.

Because of the differences between the number

representation of the system processor, and the graphical

processor, the computation may be inaccurate.

Programmable graphics hardware gives solutions for

some problems.

• All computations run on the same hardware, so

computed values will be accurate.

• The application gains more CPU time, because the

graphics hardware does the shadow generation.

• We do not have to synchronize between the GPU and

CPU.

• Silhouette detection executes parallel on many data

units (depends on how many pixel pipelines our

graphics hardware has), so we gain time.

• Using the algorithm is getting easier, because only

local pre-processing is needed.

Figure 5.5 Shadow volume implementation

The first step in my implementation is to transform the

object and light geometry into a common space. Both are

transformed into the world space. This is view

independent, and reusable for more light sources. Since

every graphics hardware unit performs the view and

projection transform concatenated, we load the identity

matrix into the projection matrix. We label every vertex

with a unique index number, to reference the vertex later.

Now we can load the data into the hardware shader. The

output will be a texture, where every texel will hold a

vertex’ data. The place in the texture is defin ed by the

index of the vertex. I used an RGBA floating point

offscreen buffer the store the vertices. After that we load

the edge information the same way. We can describe an

edge with 4 vertex indices. Two of them mean the edge’s

end points, while the others mean the two remaining

points of the adjacent triangles, which have the edge

shared. We sample the generated textures in the pixel

shader. For every edge we compute the faces normal,

decide whether it is a silhouette edge, and then write it to

the output to the edge’s index if yes. We write vertex

ordering of the face too. Finally, we have the silhouette

edge indices in the pixel shader’s output buffer.

6 Real Shadows (Soft Shadows)

6.1 Hard vs. soft shadows

In a simple case, a point is in shadow, or not. Shadows

like that are always cast by point light sources. This

means, that a surface point can see the light source, or

not. Unfortunately, light sources like that do not exist.

Even the sun is an extended light source, so it generates

soft shadow. Real light sources can be seen partially

from a surface point. We call surface points that cannot

see the whole light source the penumbra. Points that are

totally occluded form the umbra region. All other points

are totally illuminated. Computing the umbra and

penumbra is a very complicated procedure, because we

have to solve a visibility problem in the 3d space.

Figure 6.1 Soft shadow generated by a rectangular

light source

Smoothness and quality of soft shadows depends on the

distance between the light source, the occluder, and

receiver objects. If the light source is a little one, and is

far away, then we can approximate it with a point light

source. Else soft shadow computing increases the visual

quality of the rendered image.

6.2 Factors in Computing Soft Shadows

It is not too hard to compute shadows in simple scenes,

but some factors have to be introduced for complicated

scenes. For point light sources we can say, that

• In the case of more than one light source, the light is

linear in nature.

• In the case of more than one occluder, the shadow is

the union of the shadows of the occluders.

Figure 6.2 Area light source, and the generated

umbra and penumbra region

These are not true for area light sources. It can happen,

that a surface point is not totally shadowed by any of the

occluders, yet it totally occluded by the shadows of the

union of the occluders. This means, we can not combine

the visibility functions. Shadow of union of occluders

may be greater than the union of shadows of occluders.

This is a serious problem, but not disturbing in fast

moving scenes.

Figure 6.3 The lined area is not totally occluded by

any of the objects, yet it is occluded by the union of

them.

To accurately model the shadow cast by extended light

sources, we have to identify all occluding points of an

object, which can be seen from the light source. This is

far more we can do in real-time, so many soft shadow

algorithms compute the shadow only from one point of

the light source, then simulate the penumbra from the

computed hard shadow.

It is hard to notice the difference in fast moving scenes,

but imagine a big-big light source close to the occluder,

when the points of the light source see different sides of

the occluder. If the occluder is extended along the

surface normal of the light source, the penumbra may

become very difficult to be computed. In this case:

• We can use the real model of the soft shadow. This is

impossible in real-time applications.

• We can cut the light source into smaller light sources,

and compute the shadow for each independently. This

process discards some of the mistakes.

• Slice the occluder into smaller pieces, compute the

shadows, and then combine them. Combination of the

part shadows is difficult.

Computing the soft shadow in real-time means to

compute the hard shadow, and extend it to soft shadow.

We have to remember the following when computing

soft shadows:

• Softness of the penumbra region increases linearly as

the light is getting further from the occluder. By the

object it is zero.

• The umbra disappears when the light source is large

enough.

• The method needs to be able to be implemented on

programmable graphics hardware to reach real-time

performance.

• Errors should be avoided. Low sample number on the

light source could cause several hard shadows instead

of one soft shadow.

• The algorithm should work on complex surfaces, and

on fast moving scenes.

Unfortunately, all these conditions cannot be realized in

any algorithm, we have to make simplifications.

7 Shadow Map Based Methods

There are some methods that compute the soft shadow

using an image based approach.

• Computing the shadow as the combination of more

shadow maps from different points of the light

source12.

• Using layered shadow maps, that stores depth

information about all objects visible from at least on e

point of the light source.

• Using several shadow maps, and compute the

percentage visibility of the light source from the

surface points9.

• Using image analysis techniques to compute soft

shadow form shadow map 15.

• Convolving the shadow map with an image of the

light source.

Figure 7.1 Shadow generated with 1, 4 and 1024 point

samples

Some of these methods can reach real -time performance,

but only with serious simplifications. I studied shadow

volume based methods, which work faster, because they

do not have to compute hundreds of samples per frame.

7.1 Shadow Volume Based Methods

We can compute the soft shadow by extending the

shadow volume algorithm . This technique has many

different implementations.

• We can comp ute more shadow volume, and combine

them.

• By extending the shadow volume by heuristics, like

Smoothies, Plateaus
16

.

• By computing penumbra wedges, which are shadow

volumes for all edges of the occluder
17

.

7.2 The Penumbra Wedges Algorithm

The procedure replaces the half planes generated from

the silhouette edges with penumbra volumes. To the first

time the light source is supposed to be spherical. The

light intensity (LI) means how much of the light source is

visible in a single p point (s). If s=0, then the light source

is in the umbra region, if s>=1, then the point is totally

lit, if 0<s<1, the point is the penumbra region. LI changes

in the penumbra, the goal is to approximate LI in real-

time.

Figure 7.2 The ray penetrates the wedges, identifying

the penumbra regions

The penumbra volumes implicitly define the umbra

region. To reach sophisticated look for the scene, the

light intensity interpolation has to be continuous. The

idea is to introduce an easily rasterisable primitive, the

penumbra wedge , that guarantees continuous light

intensity interpolation.

Like shadow volumes, the penumbra wedges algorithm

needs the use of the stencil buffer. To have more shades

of grey in the penumbra region, we can use high

precision stencil buffer (16 bits).

If we multiply LI with a k number, then we will have k

different shades of grey. Let k=255, because a colour

buffer consists of 8 bits. The penumbra wedge adds to, or

subtracts from the value contained in the stencil buffer,

for example a ray reaching the umbra region subtracts

256 from the buffer.

The algorithm consists of the following steps:

• Set all the values in the LI buffer to 256. This means

we are outside of shadow.

• Render the scene with ambient lighting enabled.

• Compute penumbra wedges and light intensity.

• Modulate the scene with the light intensity.

• Add ambient lighting, and draw the scene.

7.3 Computing Penumbra Wedges

Penumbra wedges are approximated with half planes,

front, back, and two sides. It would be more precise to

extrude cones from the vertices , and contact them with

patches, but it would degrade performance too much.

To compute the front and back plane, we create two

points, b = c+rn and f = c-rn, where n is the normal of

the shadow volume, c is the centre, r is the radius of the

light source. Side planes are defined by the intersection

of the adjacent wedges’ front and back planes.

Figure 7.3 The front and back planes define the

common side plane

Note that setting the light source radius to zero would

create simple hard shadows.

7.4 Light Intensity Interpolation

The light intensity is interpolated with the following

formula:

lr

l
l

lr

r

tt

t
s

tt

t
s

+
+

+
= ,

where tr, and tl are the positive intersection distance with

the side planes from point p. As the side plane directions

are common between adjacent wedges, the method

ensures C0 continuity. The procedure does no sampling,

so the LI interpolation is always continuous.

7.5 Optimization and Implementation

I implemented the penumbra wedges algorithm with a

few modifications, and I used some source code from the

internet site of the authors
12

. In the next chapters I will

show what optimizations can be done.

7.6 Narrow wedges for rectangular light

If we have rectangular light source, we can extrude the

corner points of the light source through the endpoints of

the silhouette edges. This way we get rectangular cones.

To close the wedge we can use the side faces of the

rectangular cones, and we add a bottom plane to make z-

fail technique usable.

This construction of the wedges created usually narrower

wedges than the method in the previous chapter. Edges

that intersect the light source have to be eliminated,

because the wedge would close everything inside.

7.7 Optimized Shaders

 To optimize rasterization, wedge creation, and final

rendering, highly optimized shader programs have been

created, one for rectangular light sources, one for

spherical light sources.

Figure 7.4 Soft shadow with large sphere light

Figure 7.5 Penumbra wedge creation in the case of

different light sources

The spherical shader uses a cone defined by the actual

pixel, and a light source. It projects the silhouette edge

onto the plane of the light source, and computes the

occlusion percentage. In the case of rectangular light

source, the silhouette edge has to be clipped before

projection, because the opposed points may invert. The

clipping and projection can be done in homogenous

coordinates.

7.8 Backface Culling

Penumbra volumes affect those pixels that are inside the

penumbra region. The z coordinate of these points is

always inside a wedge. However penumbra wedges

occlude more points than it affect. It is not necessary to

start the pixel shader programs for these unaffected

points. Backface culling has to filter points that are

outside the actual wedge. This can be done by the

combination of the stencil and the depth test. The first

pass we render the front faces, setting the stencil value to

one for every drawn pixel. The depth test condition is

“greater than”, because we have to draw pixel further

than the front face. In the second pass we render back

faces with enabled stencil and depth test. Stencil test

succeeds only when “equal ”, and depth test succeeds

when “less”. If any of the tests fail, the pixel is discarded.

Acknowledgements

It is always a hard task to decide weather to use hard or

soft shadows. A computer has to deal with many

different problems, not only graphical, but physical

modeling problems, and maybe AI. In the case of a

complex game, the computer may not have enough

resources to compute soft shadows. This is the main case

why we try to implement more and more in graphics

hardware: to reduce the load of the CPU.

However, it is not a simple task. Sometimes we need

more steps to compute shadows that may degrade the

throughput of the shaders. Programmers have to decide

what kind of shadows they use, and quality has to be

adjustable during animat ion.

Unfortunately some features are still missing, so we

cannot achieve the best performance. For example, we

cannot read back tables in the vertex shader.

Future aims could be to find a new way to render soft

shadows, or to optimize the recent methods to increase

performance, using the features of the v3.0 shader

architecture.

References

[1] Andrew Woo, Pierre Poulin, and Alain Fournier. A

survey of shadow algorithms. IEEE Computer

Graphics and Applications, 10(6):13–32, November

1990.

[2] Szirmay-Kalos László (editor):

http://www.fsz.bme.hu/~szirmay/book.html. Theory

of Three Dimensional Computer Graphics

.Publishing House of the Hungarian Academy of

Sciences, 1995, p 430.

[3] Tom Lokovic and Eric Veach. Deep shadow maps.

In Computer Graphics (SIGGRAPH 2000), Annual

Conference Series, pages 385–392. ACM

SIGGRAPH, 2000.

[4] Marc Stamminger and George Drettakis.

Perspective shadow maps. ACM Transactions on

Graphics SIGGRAPH 2002), 21(3):557–562, 2002.

[5] Tim Heidmann. Real shadows, real time. In Iris

Universe, volume 18, pages 23–31. Silicon Graphics

Inc., 1991.

[6] Szabó Márton, A számítógépes grafika árnyékos

oldala – “Dark side of computer graphics”.

University Student’s conference paper, 2003,

November.

[7] Cass Everitt and Mark J. Kilgard. Practical and

robust stenciled shadow volumes for hardware-

accelerated rendering.

http://developer.nvidia.com/docs/IO/2585/ATT/Rob

ustShadowVolumes.pdf, 2002.

[8] Stefan Brabec and Hans-Peter Seidel. Shadow

volumes on programmable graphics hardware.

Computer Graphics Forum (Eurographics 2003),

25(3), September 2003.

[9] Wolfgang Heidrich, Stefan Brabec, and Hans-Peter

Seidel. Soft shadow maps for linear lights high -

quality. In Rendering Techniques 2000 (11th

Eurographics Workshop on Rendering), pages 269–

280, 2000.

[10] Ulf Assarsson, Michael Dougherty, Michael

Mounier, and Tomas Akenine-Möller. An optimized

soft shadow volume algorithm with real-time

performance. In Graphics Hardware, 2003.

[11] Cyril Soler and François X. Sillion. Fast calculation

of soft shadow textures using convolution. In

Computer Graphics (SIGGRAPH 1998), Annual

Conference Series, pages 321–332. ACM

SIGGRAPH, 1998.

[12] Michael Herf. Efficient generation of soft shadow

textures. Technical Report CMU-CS-97-138,

Carnegie Mellon University, 1997.

[13] Paul S. Heckbert and Michael Herf. Simulating soft

shadows with graphics hardware. Technical Report

CMU-CS-97-104, Carnegie Mellon University,

January 1997.

[14] Maneesh Agrawala, Ravi Ramamoorthi, Alan

Heirich, and Laurent Moll. Efficient image -based

methods for rendering soft shadows. In Computer

Graphics (SIGGRAPH 2000), Annual Conference

Series, pages 375–384. ACM SIGGRAPH, 2000.

[15] Stefan Brabec and Hans-Peter Seidel. Single sample

soft shadows using depth maps. In Graphics

Interface, 2002.

[16] Eric Haines. Soft planar shadows using plateaus.

Journalof Graphics Tools, 6(1):19–27, 2001.

[17] Tomas Akenine-Möller and Ulf Assarsson.

Approximate soft shadows on arbitrary surfaces

using penumbra wedges. In Rendering Techniques

2002 (13th Eurographics Workshop on Rendering),

pages 297–306. Springer-Verlag, 2002.

[18] J.M. Hasenfratz, M. Lapierre, N. Holzschuch, F.X.

Sillion. A Survey of Real-time Soft Shadows

Algorithms Eurographics 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

