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Abstract

Term blob is used with reference to 3D models with
smooth shapes which can be described as a liquid in
weightlessness. There are several methods of getting
blobs. Our main goal has been to present novel method
called GSE (Generalized Sphere Equation). GSE method
allows getting models which are generalization of classical
blobs. This paper includes description of input data, math-
ematical interpretation and solutions which allow render-
ing pictures of GSE models using ray tracing.
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1 Introduction

The blob term is used with reference to 3D models with
smooth shapes. This paper discusses a new method of ob-
taining models which are generalization of classical blobs.
The method has been called GSE (Generalized Sphere
Equation). The GSE models differ significantly, depend-
ing on parameters which have influence on their shape,
size and surface. The simplest variant of GSE method al-
lows to obtain the classical blobs. In more complicated
cases the GSE models can have many kinds of various sur-
face bumps (see section 3.1).

Blob models are described as three-dimensional sur-
faces. There are two types of such surfaces: parametric
and implicit.

Parametric surface is a set of points generated by three
functions of given number of variables. For example, bi-
variate parametric surfaces are generated by functions of
two variables: fx(i, j), fy(i, j), fz(i, j). Implicit surface
is a set of points which satisfy some equation in the three-
dimensional space:

F (x, y, z) = 0.

In case when above-mentioned equation is of the second
degree we deal with quadric surfaces. (This term is also
used with curves.) Thus, surface equation is:
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Ax2 + Bxy + Cxz + Dx + Ey2 + Fyz + Gy+
Hz2 + Iz + J = 0.

(1)

Depending on values of parameters A, B, ..., J equa-
tion 1 can describe plane, sphere, cone, cylinder and the
like.

Section 2 examines how the surfaces allied to quadrics
have been used to making blobs. Section 3 includes the
input data and the mathematical interpretation of the GSE
method. In section 4 the usage of GSE method in ray trac-
ing is discussed. There is description of implementation
and results in section 5. The last section includes conclu-
sions and discussion of future works.

2 Related Works

2.1 J. F. Blinn’s method

The first blobs were generated in 1982, when James F.
Blinn used a method allied to quadric surfaces to solve
the problem of computer aided visualization of molecular
model.

In [1], a physical interpretation is given for mathemati-
cal solutions used. According to quantum mechanics, the
electron in an atom can be represented as a density func-
tion of the spatial location. For a hydrogen atom, density
function is:

D(x, y, z) = e−ar,

where

r =
√

(x − x1)2 + (y − y1)2 + (z − z1)2
(x1, y1, z1) − the center of an atom.

According to superposition theorem, density function can
be used for many atoms. Thus the sum of density contri-
butions of each atom should be taken into account:

D(x, y, z) =
∑

i

bie
−airi ,

where ri =
√

(x − xi)2 + (y − yi)2 + (z − zi)2 is the
distance from (x, y, z) to the center of atom i. A molecu-
lar surface can be defined as a set of points where density



function equals some threshold value T . Using implicit
surface definition a molecular surface can be described as:

F (x, y, z) =
∑

i

Te−air
2
i −Bi .

In above equation bi has been specified in term of a blob-
bines parameter Bi.

[1] describes how to obtain the pictures of Blinn’s blobs
using ray tracing. Deriving ray equation begins with the
various transformations into a standard viewing space. Re-
ciprocal transformations let calculate viewing ray equa-
tion. For each point of the ray, coordinates x and y depend
on the z coordinate. Thus, calculating the z coordinate is
enough to get the ray and surface intersection. J. F. Blinn
has divided z value calculating into two phases:

1. Root isolation phase: finding the range in which is a
solution. In Blinn’s solution for each viewing ray, a
list of n values: z1, z2, ...zn−1 is made. The zi value
is a z coordinate of this point on the ray in which atom
i has the biggest influence Di on density function D.
The list of z1, z2, ...zn−1 values is sorted in ascend-
ing order. The list is searched for the first value zi

for which Di(zi) is greater than or equals T. Thus,
〈zi−1, zi〉 is a required range for numeric methods of
finding zeros.

2. Root refinement phase: finding a solution in a given
range (using general numeric methods of finding ze-
ros, like Newton method or regulafalsi method).
Blinn suggested using combination of two numeric
methods of finding zeros: Newton method and the
regulafalsi method.

The surface normal at a given point can be found by
taking the gradient of the surface defining function, F :

N =
[
∂F

∂x
(x, y, z),

∂F

∂y
(x, y, z),

∂F

∂z
(x, y, z)

]
,

∂F

∂x
=

∑
i

−2ai(x − xi)e−air
2
i −Bi ,

∂F

∂y
=

∑
i

−2ai(y − yi)e−air
2
i −Bi ,

∂F

∂z
=

∑
i

−2ai(z − zi)e−air
2
i −Bi .

Described method works well for small number of
atoms (a few dozen). Yet it is much to slow when num-
ber of atoms is in the order of a few thousands. That is
why the algorithm has been optimized.

The idea is based on the fact that only a part of atoms
have influence on surface and ray intersection. Thus, the
calculation can be limited to these atoms which are close
enough to the viewing ray. Each atom could then be en-
closed in a sphere. The enclosing spheres of all atoms are
projected into screen space. Thus, it is possible to find the
atoms which can have influence on the color of each pixel.

2.2 Other Solutions for Blinn’s Method

The solutions of optimizing the algorithm of ray tracing
implicit surfaces are described in [3].

While looking for intersection of viewing ray and im-
plicit surface it is usually not possible to use an analytical
method. That is because surface functions are very com-
plicated as it was in case of the function H in J. F. Blinn’s
method.

The solution is to use a numeric analysis. Usually, mod-
ifications or combinations of classical numeric methods
are used, preceded by necessary transformations. Authors
follow J. F. Blinn and divide calculations into root isola-
tion phase and root refinement phase.

One of the methods of optimizing the root isolation
phase is to approximate the complicated implicit function
with a polynomial. In 1986, Geoff Wyvill suggested the
approximation by the polynomial function C(r2):

C(r2) =

⎧⎨
⎩

− 1
144 (r2)3 + 17

144 (r2)2 − 11
18r2 + 1
if r2 < 4

0 otherwise.

The received models have been called soft objects. They
are described in [2].

[5] describes using method taken from numerical anal-
ysis in root isolation phase. The method is called interval
analysis and originated in 1966 [6].

To start the interval analysis, a function and a bracket
of arguments must be given. The method narrows given
bracket down to new bracket in which function is mono-
tonic and has zero.

An interval [a, b] is an ordered pair a ≥ b representing
the range of numbers x : a ≥ x ≥ b.

Several operations on intervals were defined: addition,
subtraction, multiplication, division, squaring, exponenta-
tion. They allowed to calculate the value of Blinn’s surface
function when the argument is a given interval.

The interval analysis method loops over five steps as
follows:

1. Calculating the interval [s0, s1] = H[t0, t1],

2. If 0 /∈ [s0, s1], it means that in the bracket 〈t0, t1〉
function doesn’t have zeros. The algorithm is finished
with the adequate communicate,

3. Calculating the interval: [r0, r1] = H ′[t0, t1],

4. If 0 /∈ [r0, r1], it means that the function f is mono-
tonic in bracket 〈t0; t1〉. The algorithm is finished and
the 〈t0, t1〉 bracket is returned.

5. Back to the first step for intervals: [t0, t0 +1(t0 +t1)]
and [t0 + 1(t0 + t1), t1].

Realization of above algorithm gives monotonic seg-
ment of the function, so then the root refinement phase
can start.



3 Mathematical Interpretation of
GSE Method

The idea of the GSE method is based on observation that
sphere is a set of points which distance from one point
(center) is constant whereas ellipsoid is a set of points
which sum of distances from two points is constant. The
idea is to generalize this principle for three, four or more
points. Thus, the generalized sphere equation is:

n−1∑
i=0

di = d, (2)

where

di =
√

(x − xi)2 + (y − yi)2 + (z − zi)2,
(x, y, z) is the point on the surface,
(xi, yi, zi) is the ith equivalent of the center.

We assume that the models, made using the GSE
method must meet the following conditions:

1. The model surface should be determined by a set of
points (they have been called gravity points).

2. The model should have soft shape.

3. The gravity points should have only a local influence
on the shape of model (to make modeling intuitive).

The models described by equation 2 meet the first and sec-
ond conditions, but the third condition which concerns lo-
cal influence of the gravity point on the model shape is not
met. So, the GSE model equation has been expanded to:

∑n−1
i=0 w (di) di∑n−1

i=0 w (di)
= d, (3)

where

di =
√

(x − xi)2 + (y − yi)2 + (z − zi)2
w(di) = ϕi (f(di) + g(di)) .

Derivation of the equation 3 can be found in section 3.2.
The accurate meaning of f(di), g(di) and ϕi is expleined
in section 3.1. In case when n = 1, ϕ0 = 1, f(di) = 1,
g(di) = 0 we result in a sphere equation (or circle on the
plane) were the radius equals d:

d0

1
= d =⇒ d0 = d, or

√
(x − x0)2 + (y − y0)2 + (z − z0)2 = d.

3.1 Input Values

Every model is described by:

• set of n (n ≥ 1) gravity points in the 3D space
{(x0, y0, z0), ..., (xn−1, yn−1, zn−1)},

Figure 1: The influence of the gravity points on the model
shape

Figure 2: The influence of the weights assigned to the de-
termining points on the model shape

• set of weights {ϕ0, ...ϕi, ..., ϕn−1}, ϕi ∈ [−1, 1] as-
signed to the points,

• d parameter determining size of the model,

• pair of functions f and g describing the shape and the
bumps of the model, respectively.

The gravity points describe shape of the model. Every
intersection of the model is a closed curve of soft shape or
set of such curves (fig. 1). The weights describe influence
of every single point on shape of the model. Weights range
from –1 to 1, both inclusive. In fig. 2 there are model inter-
sections with the gravity points marked. The d parameter
determines size of the model. The larger the model, the
smaller the influence of each gravity point (fig. 3).

The function f describes the overall shape of the model.
It’s arguments are d0, d1, d2, ..., dn−1. di stands for the
distance between a given surface point and the ith gravity
point. For the model to have expected shape, the func-
tion f should have smooth graph. Moreover, the function
f should assign lower values to the further gravity points.

Figure 3: The influence of the d parameter on the model
size and shape



Figure 4: The influence of the function f on the model
shape

Example equations that meet both conditions are shown
below. (dmax stands for the distance between given sur-
face point and the furthest gravity point.)

a) f(di) =

{
1
dk

i

for di �= 0
0 for di = 0

b) f(di) =

{
1
2

(
cos

(
di

dmax
π
)

+ 1
)

for di �= 0
0 for di = 0

c) f(di) =

{
1
2

(
cos

(
di

dmax
π
)

+ 1
)

for di �= 0
0 for di = 0

The function g describes the surface bumps. In previous
examples, the function g was constant and equal to 0. In
fig. 5 an example of a model with non-constant function g
is shown.

3.2 Derivation of GSE

Let’s exchange the sum on the left side of equation 2 with
the weighted average:∑n−1

i=0 w(di)di∑n−1
i=0 w(di)

= d.

Coefficients w(d0)...w(dn−1) should meet the follow-
ing conditions:

1. The coefficients should be chosen so that the grav-
ity points located closer to a given point of the sur-
face have more influence on it’s location than further
gravity points.

2. The coefficients should depend on weights ϕi as-
signed to each gravity point.

3. The coefficients should have influence on surface
bumps described by the function g.

The first condition means that coefficients should have
the greatest values for the nearest gravity points and the
smallest values for the furthest ones. An example solution
is the inverted square of the distance:

Figure 5: Intersection (on top) and draft 3D image of
model with non constant function g

w′′(di) =
1
d2

i

.

Let’s generalize and replace the inverted square of the
distance with any function f (see section 3.1) that meets
the first condition:

w′′(di) = f(di).

To meet the second condition, value of each coefficient
should be determined by a weight assigned to each gravity
point :

w′(di) = ϕiw
′′(di) = ϕif(di).

To meet the third condition, we need to take into con-
sideration the surface bumps described by the function g
(see section 3.1).

w(di) = ϕi(f(di) + g(di)).

4 Application of GSE Method in
Ray Tracing

This section discusses two calculating methods: finding
the intersection of a ray with a GSE model and finding
normal vectors. These two methods enable the GSE mod-
els to be used in ray tracing.



4.1 Finding the Intersection of a Ray
with a GSE Model

4.1.1 Problem Description

Finding the intersection of a ray with a GSE model can be
realized using every method used for blobs. The method
used in the GSE ray tracer is similar to the method de-
scribed in [1], but seems to be simpler in implementation.
In future it will probably be replaced with the interval anal-
ysis method.

Let dir be the vector determining the viewing ray direc-
tion in ray tracing method. Then, to find the intersection
of the ray with the GSE model, we need to solve the fol-
lowing equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n−1

i=0
ϕi(f(di)+g(di))di∑n−1

i=0
ϕi(f(di)+g(di))

= d

x = x0 + dirxt
y = y0 + diryt
z = z0 + dirzt.

The last three of the above equations are the parametri-
cal description of a line in space. After inserting x, y and
z, we result in:

∑n−1
i=1 ϕi (f(di) + g(di)) di∑n−1

i=0 ϕi (f(di) + g(di))
= d, (4)

di =
√

d2
x + d2

y + d2
z

dx = (x0 + dirxt − xi)
dy = (y0 + diryt − yi)
dz = (z0 + dirzt − zi) .

The solution is to find the minimal positive value of the
t parameter. Due to the complexity of equations 4, instead
of searching an analytical solution method, a numerical
method was used. As in [1] it has been divided in to two
phases: root isolation phase and root refinement phase.

4.1.2 Root Isolation Phase

For a given t, let’s denote solution error of equation 4 with
ε(t) (di as in equation 4):

ε(t) = d −
∑n−1

i=0 ϕi (f(di) + g(di)) di∑n−1
i=0 ϕi (f(di) + g(di))

.

The precise solution is the smallest of the error func-
tion’s zero points. Thus, we have to numerically find the
smallest t where ε(t) ≈ 0.

Let’s consider n planes π0, π1, π2, ...πn−1 crossing the
appropriate gravity points and perpendicular to the di-
rection of a given viewing ray. The ray intersects the
π0, π1, π2, ...πn−1 planes in n points determined by the n
values of the t parameter: t0, t1, ...tn−1. We can calculate
the intersections of the ray with the planes by combining

Figure 6: Isolation of the first zero

the ray equation with the appropriate plane equation. The
mathematical description can be found in [4].

dirx(xi − x) + diry(yi − y)+
dirz(zi − z) = 0
x = x0 + dirxt
y = y0 + diryt
z = z0 + dirzt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒

ti = dirx(xi − x0) + diry(yi − y0) + dirz(zi − z0).

From the geometrical interpretation we know that in
ranges where the ray runs inside the model, the error func-
tion has positive values, while in ranges where the ray runs
outside the model the error function has negative values.

Thus, we can deduce that the smallest zero point of the
function can be located (see fig. 6):

• in the 〈t0 − r; t0〉 bracket if ε(0) < 0 and ε(t0) ≥ 0,

• in the 〈ti−1; ti〉 bracket if ε(t0), ε(t1), ..., ε(ti−1) <
0 and ε(ti) ≥ 0.

To recap, the algorithm for root isolation phase can be di-
vided in to the following steps:

1. Finding the ti values for ray plane intersection (One
plane is created for each consecutive gravity point),

2. Sorting the ti values,

3. Checking if the following condition is met for con-
secutive ti:

ε(ti) ≥ 0, i = 0, 1, 2, ..., n − 1.

If yes, we can stop checking condition and return the
bracket 〈T1; T2〉:

〈T1; T2〉 = 〈ti−1; ti〉 if i > 0, or
〈T1; T2〉 = 〈t0 − r; t0〉 if i = 0.



4.1.3 Root Refinement Phase

After finishing the above algorithm, we result in a bracket
〈T1; T2〉 where ε(T1) < 0 and ε(T1) > 0.

Now, we can find the function’s zero point using one
of classical numeric method. The iterative secant method,
which is especially well suited, can be found in [7].

4.2 Finding the Normal Vectors

This section discusses two methods of finding the normal
vectors for a the GSE models. The first method is quite
quick but it works only if g(di) = 0. The second method
is slow than the first one but it works also if g(di) �= 0

4.2.1 Method Based on the Dummy Centers

If assume that g = 0 the method of finding the normal vec-
tors can be based on the idea of ”dummy centers” defined
in the following way:

Definition. For a given surface point P(x, y, z) of a solid,
a dummy center is a C point such so C-P is a normal
vector beginning in P.

For the solids described here, a dummy center for any
surface point P is a weighted average of the gravity points:

Cx ≈
∑n−1

i=0
ϕif

2(di)xi∑n−1

i=0
ϕif2(di)

Cy ≈
∑n−1

i=0
ϕif

2(di)yi∑n−1

i=0
ϕif2(di)

Cz ≈
∑n−1

i=0
ϕif

2(di)zi∑n−1

i=0
ϕif2(di)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,
Nx = x − Cx

Ny = y − Cy

Nz = z − Cz

⎫⎬
⎭ .

For a sphere, after inserting n = 1, ϕ0 = 1, f(di) = 1,
we result in the geometrical center coordinates:

Cx = 1·d2
0x0

1·d0

Cy = 1·d2
0y0

1·d0

Cz = 1·d2
0z0

1·d0

⎫⎪⎪⎬
⎪⎪⎭ =⇒

Cx = x0

Cy = y0

Cz = z0

,
Nx = x − x0

Ny = y − y0

Nz = z − z0.

Fig. 7 a) shows results of the described method. Normal
vectors are marked with blue lines and the dummy centers
with green dots.

4.2.2 Method Based on the Gradient

In case when g �= 0 the normal vector can not be found us-
ing dummy centers method. However every implicit sur-
face normal can be found by taking the gradient of the
surface defining function. Thus, according to equation 3
we have:

F (x, y, z) =
∑n−1

i=0 ϕi (f(di) + g(di)) di∑n−1
i=0 ϕi (f(di) + g(di))

− d,

∇F =
[
∂F

∂x
,
∂F

∂y
,
∂F

∂z

]
.

Figure 7: GSE normal vectors calculated using the dummy
centers (on top) and the gradient (on bottom)

For example the x componenet will be

∂F

∂x
=

∂N
∂x D + N ∂D

∂x

D2
,

where
N =

∑n−1
i=0 ϕi (f(di) + g(di)) di,

D =
∑n−1

i=0 ϕi (f(di) + g(di)) ,
∂N
∂x =∑n−1

i=0 ϕi(x − xi)
[
f ′(di) + g′(di) + f(di)+g(di)

di

]
,

∂D
∂x =∑n−1

i=0 ϕi
x−xi

di
(f ′(di) + g′(di)).

The result for the GSE model intersection is shown in
fig. 7 b).

5 Implementation and Results

Two calculation methods described in section 4 has been
implemented in ray tracer supporting GSE models. The
GSE ray tracer has been written in the C++ Builder and
exist as a standalone application. User interface allows
changing the following input data:

• position and direction of the camera,

• light position,

• activation/deactivation of antialiasing,



Figure 8: Pictures of GSE models generated by raytracer

Figure 9: Pictures of the same testing model for six differ-
ent light position

• activation/deactivation of tracing shadows,

• selection of example scene,

• position of solids (GSE models and spheres) can be
seen in 2D projections.

On the output the program generates picture of scene
composed of spheres and the GSE models. Sample results
are showed in fig. 8.

To test the ray tracer implementation, an example GSE
shape (see fig. 9) was rendered in different light condi-
tion and the results were evaluated. We did not notice any
deformation or other faults. Moreover the correctness of
GSE shapes were confirmed by comparison of rendered
pictures and GSE intersections (see fig. 10).

Tests showed that finding the intersection of a ray with
a GSE model and finding normal vectors give expected
results.

Execution time has been measured for pictures of res-
olution 400x400. The results are presented in tab. 1.

Figure 10: GSE shape intersection and picture generated
by the ray tracer

Achieved results let treat calculating methods as quite ef-
ficient.

Number of Rendering time in [s] Rendering time in [s]

gravity points AMD K6 300 MHz AMD Duron 600 MHz

2 9 3
3 11 4
6 24 9
12 53 22

Table 1: Rendering time of GSE models

6 Conclusions and Future Works

Presented results show that GSE method allows getting
models which resemble Blinn’s blobs. According to ex-
pectations, the method lets control the shape of model and
modify surface bumps.

The main future work is to ray trace the GSE models
with surface bumps (g �= 0). In the fig. 11 draft pictures of
such models are presented.

Another future goal is to evaluate the possibilities of ef-
ficient calculation of texture coordinates. It would allow to
map textures on the GSE shapes. Performance optimiza-
tion are also taken into consideration.



Figure 11: Draft pictures of models with surface bumps

References

[1] J. Blinn. A generalization of algebraic surface draw-
ing. ACM Transactions on Graphics, Vol.1, pages
235–256, 1982.

[2] Brian Wyvill Geoff Wyvill, Craig McPheeters. Data
structure for soft objects. Computer Graphics World,
May 1993, pages 227–234, 1993.

[3] John C. Hart. Ray tracing implicit surfaces. 1993.

[4] Teresa Jurlewicz and Zbiegniew Skoczylas. Algebra
liniowa (in Polish). Wroclaw, 1999.

[5] D. P. Mitchell. Robust ray intersection with interval
arithmetic. pages 68–74, 1990.

[6] R. E. Moore. Interval Analysis. Prentice Hall, 1966.

[7] Wanda Ronka-Chmielowiec and Antoni Smoluk.
Metody numeryczne (in Polish). 1978.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


