
Animating Human Faces Using

Modified Waters Muscle Model.

Peter Drahoš∗

Peter Kapec†

Faculty of Informatics and Information Technologies
Slovak University of Technolgy

Bratislava / Slovakia

Abstract

Facial animation plays an important role in face-
to-face communication. With the power of current
personal computers and their modern GPUs we are
now capable of rendering high quality photo-realistic
graphics. In this paper, we present an implementa-
tion of a muscle-based 3D animation method that is
suitable for almost any face mesh. We also extend
Waters’ muscle model to support overlapping and
muscle force normalization. In addition, we present
techniques that significantly accelerate the animation
while keeping memory requirements minimal.

Keywords: real-time animation, facial animation,
muscle models, warping, optimization,

1 Introduction

Computer animation of living objects is still a chal-
lenge, mostly when the animation and visualization
should be created and displayed in real-time. Model-
ing and animating human bodies is one of the most
difficult tasks.

There are many applications of animated humans,
ranging from avatars in 3D chat environments trough
medicine and similar scientific fields, film and enter-
tainment industry to education etc. Simulating vir-
tual humans requires application of several techniques
such as: the skeletal model, simulating virtual muscles
and skin, eye motion, gestures and facial expression
etc.

Animation of facial expressions has a crucial role in
face-to-face communication[1]. Today’s personal com-
puters are already capable of rendering photo-realistic
quality faces but the algorithms we use for the ani-
mation are far from perfect. To produce believable
animated faces we not only need excellent rendering,
the quality of the animation plays the same role here.

In this paper we describe methods for creation of

∗drahos@webcom.sk
†pk99316@decef.elf.stuba.sk

such real-time animations in 2D and 3D. We describe
a pseudo muscles method based on Waters’[2] models
and extend these models to support interaction. In
addition, a optimization method to increase anima-
tion performance is presented followed by a method
to normalize forces used in these models.

We start by briefly describing the background of fa-
cial animation in Section 2. Section 3 briefly describes
our effort to create facial animation using accelerated
grid warping. In Section 4, we describe the present
state of the muscle driven methods which seem to be
more promising. In Sections 4.1 to 4.5 we focus on
two most common problems that occur when muscle
interaction is not used. These are followed by tech-
niques which we subsequently developed to overcome
them. Finally, in Section 5, we examine the influ-
ence of these techniques on the animation speed and
quality.

2 Background

Facial expression animation can be done in 2D and
3D. Each is optimal for different applications and
each has its specific drawbacks. 2D techniques
are suitable for educational purposes and for simple
telepresence[1]. 3D methods are more flexible, espe-
cially in 3D environments.

There are many approaches ranging from simple
real-time animations to some sophisticated non real-
time anatomical simulations. The current animation
techniques can be divided into three categories: image
manipulation, geometry manipulation and combined
geometry with image manipulation.

First we introduce several 2D methods and com-
pare them. Then we focus on the second 3D category
which comprises several techniques including: muscle
models, parameterization and interpolation.

One of the basic methods in 2D is image morph-
ing. This method uses several different input pho-
tographs for different emotions. The animation is cre-
ated by morphing these images between each other.
The limitation of this method is the restriction to the

number of input images from which the animation
can be created. A similar method uses short video
sequences in connection with phonemes[3] or short
words. Phonemes are minimalistic sound and mimic
units which when sequenced can synthesize speech.
Joining of such video sequences1 can create facial ani-
mation. The difficulty is to ensure smooth transitions
between these video sequences. This can be done us-
ing other methods e.g. image morphing.

Other method for creating facial expressions anima-
tions uses image warping. The input for this method
is a photograph. This image is mapped on 2D polyg-
onal mesh. Transforming the position of several ver-
tices of this mesh deforms the image as shown in Fig-
ure 1. The polygonal mesh can be uniform or of differ-
ent polygon types. The main drawback of the uniform
mesh is the inability to ”open lips” without deforming
the face unnaturally. Non-uniform mesh is suitable
when the face is described by feature points.

An international standard MPEG-4[4] was created
to standardize multimedia communication. Part of
this standard describes modeling and animating vir-
tual humans. MPEG-4 defines more then 68 feature
points located on a face in order to provide reference
for defining facial animation parameters. The under-
lying polygonal mesh for image warping can be de-
fined using these standardized feature points.

To create facial expressions animation in 3D, sev-
eral different methods can be used. The simplest tech-
nique is to map a dynamic texture onto a static 3D
geometry model of a head2. This animation does not
look very realistic, especially when the jawbone is not
moving while speaking. More precise methods modify
the geometry of the 3D model of the head. Proba-
bly the simplest real 3D approach is the interpolation
technique. This technique stores models for each ex-
pression. Animation is achieved by linearly interpo-
lating between these models. Morphing can be used
to morph between several different 3D models with
different face expressions. Methods which require sev-
eral models for expressions often have high memory
requirements. Having many models also limits the re-
usability of these methods. On the other hand param-
eterization techniques require only one model. This
model has to be manually prepared and adjusted to be
suitable for animation but is reusable. These models
are prepared by hand which is very time consuming
and difficult.

Facial expressions animation can be done by simu-
lating face muscles. This approach was introduced by
Waters[2] and is probably the most optimal choice for
both fast, simple methods and for anatomical simula-
tions.

Of course anatomical simulations require massive

1A nice feature of this method is the simultaneous voice

output stored in these video sequences.
2Very common method used in games.

computations and they are generally not suitable for
real-time animation. The simple muscle models, of-
ten called pseudo muscle models are generally very
fast and their results are mostly satisfactory. This
is because they directly deform the facial mesh and
do not simulate the underlying anatomy as physically
based muscle models do. Pseudo muscle models are
often combined with image manipulation to produce
realistic outputs but this characterizes them as com-
bined animation techniques[5].

The muscle is basically a vector with features that
describe the parameters of the muscle. All muscles
have an area of influence and a formula to deform
vertices in this area. Modifying these parameters con-
tracts and deforms vertices on the face model.

The most common real-time animation method giv-
ing excellent outputs is a pseudo muscle model com-
bined with an image manipulated bump-map applied
upon the model[6].

Figure 1: 2D warping with uniform grid mesh.

3 Accelerated warping

Our work is an attempt to improve visual capabilities
of previous projects[7, 3] created at our faculty dealing
with face animation.

We started with an application prototype which
used OpenGL to accelerate 2D warping. Warping was
done using a texture-mapped uniform polygon grid.
We were interested in the quality of the images cre-
ated using hardware accelerated grid transformations.
The animation used key frame based system with lin-
ear interpolation of grid vertices. At first the quality
of the output images and animation seemed suitable

Figure 2: Effect of the cell overlaping problem de-
scribed in Section 3.

for further work. The first problem we were unable to
solve occurred when grid cells overlapped. This can
be seen on Figure 2. The following experiments we
did with this model proved the “open lips” problem
with uniform grid warping which was mentioned in
Section 2. Another drawback is that the grid has to
be tailored specifically for every input image manually
as faces often have different sizes and features. The
screen of the prototype can be seen in Figures 1 and
2.

This method was abandoned because preparing an-
imation by manually adjusting vertices of the under-
lying grid for every emotion was very time consuming
and not reusable. We focused our efforts on 3D pseudo
muscle models which are model independent.

4 The muscle model

Muscle driven animations use a set of virtual mus-
cles. Models of these muscles are based on Waters’[2]
muscle models. All these muscles define an area of
influence and a deformation formula for all influenced
vertices. Waters has defined three types of muscles:
linear vector muscle, which is used for almost all face
muscles, the sphincter3 muscle and the sheet4 muscle.

We focused on the linear vector model shown in
Figure 3. Our goal is to extend this model to sup-
port overlapping. Overlapping and muscle combina-
tion was not described by Waters in his work[2] which
focused on the mathematical models.

To understand why overlapping is important we
have to first outline some effects that overlapping

3Used for the Orbicularis Oris.
4Used for the Frontalis

muscles cause. Particularly for muscles without sup-
port for overlapping. Two most common problems
that occur with sequential animation of muscles will
be described in the next Sections 4.1 and 4.2. Exten-
sions to overcome these problems and to improve the
model are presented in Sections 4.3 to 4.5.

v

v

p

p

p

p

p

RR

p’s f

m

n

r

s

1

2

Figure 3: The linear muscle model

4.1 Ordering the sequences

This is the main problem with the Waters model when
using sequential animation for each muscle indepen-
dently.

Consider the situation in Figure 4. Here we have
two overlapping muscles M1,M2 shown by their areas
of influence and a vertex p. The two muscles create
displacements d1 and d2 which affect the position of
vertex p in sequence, creating p′ and p′′. The anima-
tion frame is then achieved by sequentially adding the
influences of each muscle to the position of the vertex
p5 this process is described by the Algorithm 1. So
after animating muscle M1 the resulting vertex posi-
tion of vertex p will be p′ then after animating muscle
M2 the resulting position will be p′′. This behavior
is mostly correct, but what if the displacement d1 is
greater than shown in the figure or what if the point p

is closer to the origin of muscle M1? Then the point p′

would be out of the influence of the muscle M2! This
behavior is unacceptable and produces jumpy tearing
in the animation.

Most implementations solve this by arranging mus-
cles so that this effect is minimal but they do not
solve this problem. The result does not only depend

5This is done for every vertex in the muscle influence area.

on the arrangement of the muscles but the order of
animating the muscles plays a great factor.

M

M

p
d

dp’

p"

1

1

2

2

Figure 4: Overlapping with sequential animation.

4.2 Area of influence problem

As shown in the muscle model in Figure 3, only the
vertexes inside the influence area are modified so there
is no need to consider other vertexes. This is correct
while no muscles overlap. If muscles overlap than it
is possible for vertexes outside the influence area to
be transformed into the area, so all vertexes must be
considered for animation. This can be a huge perfor-
mance drawback because while animating a muscle
we have to test every vertexes position. If it is in the
area of influence we transform it, else we ignore it as
shown in Algorithm 1. That means when animating
M muscles on a model with V vertexes we have to do
MxV area tests.

M

M

p

p’

d

d

1

1

2

2

Figure 5: Overlapping using summed displacements.

4.3 Extended Waters’ model

The problems described in Sections 4.1 and 4.2 can
be simply solved by always transforming only the un-
deformed base mesh and by combining all displace-
ments from all muscles into a single displacement for
each vertex from the face. Then the order of muscle
animation would not play any role on the resulting
deformation as in Figure 5. This can be done due to
the fact that all muscles deform only the base mesh
and their displacements are summed6. This of course
requires to modify the original formula of the Waters
model7.

The muscle is basically a vector from v1to v2.
Rsand Rf represent fall-off radius start and finish
respectively. The new vertex p′of an arbitrary vertex
p located on the mesh within the segment v1prps,
along the vector (p, v1), is computed as follows:

p′ = p + cos(α)rk pv1

‖pv1‖

where α is the angle between the vector (v1, v2)
and (v1, p),D is‖v1 − p‖,k is a fixed constant repre-
senting the elasticity of the skin, and r is the radial
displacement parameter:

r =

{

cos(1 − D
Rs

)

cos(D−Rs

Rf−Rs
)

for p inside sector (v1pnpm) and for p inside
sector (pnprpspm).

To accumulate displacements we use the following
computation instead:

d′ = d + p + cos(α)rk pv1

‖pv1‖

where d is the displacement for the vertex p

and d′is the new combined displacement. No other
modifications are needed in the computation but
a different approach has to be used to compute
animation frames as shown in Algorithm 2. This
approach produces outputs without visible tearing
of unexpected behavior even for three or more
overlapping muscles.

When adding up displacements some vertices may
end up with extreme displacements which were added
up from partial displacements of each muscle. This
problem can be solved by simulating parallelism[5].
We did not notice any unnatural effects caused by
such displacements in our experiments so we ignore8

it.

6Sum is always the same for all permutations of its elements.
7We will only modify the linear vector muscle but other

models are possible.
8Our goal is real-time animation after all.

Algorithm 1 Original sequential algorithm

// frame loop

while(! end) {
// reset all vertices to their default position

ResetAll();

// for all muscles

for(int m=0;m<MAX MUSCLES;m++)

//for all vertices

for(int v=0;v<MAX VERTICES;v++) {
// v is in influence of m

if(influence(m,v))

// deform vertex v using muscle m

v=deform(m,v)

}
Render();

}

Algorithm 2 Overlapping muscles

// frame loop

while(! end) {
// reset displacement and position for all vertices

ResetAll();

// for all muscles

for(int m=0;m<MAX MUSCLES;m++)

// for all vertices

for(int v=0;v<MAX VERTICES;v++) {
// v is in influence of m

if(influence(m,v))

// add displacement to v using muscle m

v.displacement+=deform(m,v);

}
// Apply displacement to position for all vertices

ApplyAllDisplacements();

Render();

}

Algorithm 3 Optimized animation with overlapping

// stores vertices in influence for each muscle

SetupMuscles();

// frame loop

while(! end) {
// reset displacement and position for all vertices

ResetAll();

// for all muscles

for(int m=0;m<MAX MUSCLES;m++)

// for all associated vertices

while (v=GetNextMuscleVertex(m))

// add displacement to v using muscle m

v.displacement+=deform(m,v)

// Apply displacement to position for all vertices

ApplyAllDisplacements();

Render();

}

4.4 Optimizing speed

Now using the extended model and algorithm form
the subsection 4.3 we have a set of muscles that al-
ways operate on the default mesh. This means no
vertices can be transformed into the area of influence
of any muscle as was described in Section 4.2. We are
now able to pre-calculate the test of influence for all
muscles and vertices before the actual animation. We
will store a reference to every vertex inside the area
of influence for each muscle, then while animating a
muscle we only consider these vertexes for animation.
The result is Algorithm 3 which if significantly faster
than Algorithm 2 or 1, because no testing is done
while animating a frame. The overall speedup is de-
pendent on the alignment of the muscles to the face
mesh.

4.5 Normalizing forces

All muscles are animated using the r argument in the
muscle formula from Section 4.3. Setting this argu-
ment to different values generates different deforma-
tions of the face mesh.

In order to have expressions that can be applied to
various face models we decided to normalize values
of the r variable to the range < 0, 1 >. We call the
normalized r variable rnorm. We will also need a vari-
able rmaxwhich defines the upper limit of the variable
r and is stored for every muscle in the face. Then
before animating any muscle we can simply obtain r

as r = rnormrmax. Thus when rnorm = 0 the muscle
generates no displacement and no visible mesh defor-
mation9. When rnorm = 1 the generated displace-
ment than produces deformation rmax. rmax must be
set up by hand when creating muscle structure. Than
we can store emotions with values ranging from 0 to
1 for each muscle. We also have to store rmax with
the muscle setup which is bound to the given mesh.

The only drawback is that normalized expressions
can only be applied to faces which have the same
muscle structure modified for the given mesh. This
is not a problem when these structures are created
from templates that are only adjusted for the mesh
geometry.

5 Results

We have significantly improved the animation speed
by pre-calculating influences for all muscles. This re-
quires more memory to store the pre-calculated refer-
ences but removes all influence testing from the frame
animation loop.

9These muscles can be ignored in the animation to speed it

up a bit.

Our method is suitable for 3D meshes with small
and moderate number of polygons. Increasing num-
bers of polygons may produce more detailed10 results
but the number of polygons plays a great factor in the
animation speed and increasing polygon counts often
prevents real-time animation.

Algorithm FPS

1. Default 58.6
2. With overlapping 57.3

3.With overlapping and optimization 187.2

Table 1: Speed results using various algorithms.

By comparing all the algorithms in Table 1 we have
noticed the significant speed improvement in the algo-
rithm 3. The model used in the tests has about 15000
polygons and was rendered with nVidia FX 5600 video
card on a Pentium 4 ,1.8 GHz.

The resulting application gave satisfactory results
shown in Figures 6 and 7. Animation is done in real-
time using interpolation of muscle forces between nor-
malized emotions.

Normalization of emotions enabled us to share an-
imation sequences between completely different mod-
els with the same muscle structure. It is even possible
to combine different animations or to animate differ-
ent areas independently. Fact is that normalized emo-
tions are easy to create and their reusability is very
high.

To emulate jaw movement we have simply created a
linear muscle that pulls the lower part of the face down
creating a similar effect. In the sample animation we
use 18 muscles11 which overlap mainly in the mouth
area. More muscles can be added and removed even
while the application is running. The model used in
the application was not preprocessed or modified for
the animation purpose.

6 Conclusions

In this paper, we have described a simple method for
animating real-time facial expressions. We have de-
veloped a application to test the speed and quality of
the results achieved with this method. Our method
completely removes the problem of overlapping mus-
cle interaction by using simple and fast displacement
accumulation and enables us to pre-calculate muscle
influences before animating. The modified method of-
ten takes only a fraction of the previous calculation
time depending on the muscle arrangement.

By maintaining the simplicity of Waters’ muscle
model we have successfully created an usable expres-

10Especially when using muscles that create wrinkles or other

skin effects.
11All are linear vector muscles.

Figure 6: Default sample mesh with muscles.

sion animation method suitable for real-time face an-
imations on a regular personal computer. Our ap-
proach is easy to apply to any other face with no need
to modify its mesh.

There are still issues we would like to improve on
our model in the future. First of all, simulating skin
effects using bump-maps or muscles generating wrin-
kles would greatly increase realism. Secondly, we
would like to try to implement the algorithm using
OpenGL vertex shaders as this would give the method
additional performance boost. Finally, we want to
test the possibilities of using this method to simulate
muscles not only on faces but in skeletal animation
and other areas.

7 Acknowledgements

We would like to thank Martin Šperka for his guidance
during the time we developed our application and for
valuable help with this paper. Also many thanks to
our friend Martin Kiselkov who is on the Figures 1
and 2.

Figure 7: Sample expression

References

[1] M. Šperka, “Telepresence and human body mod-
elling,” Symposium Proceedings ISTEP, pp. 281–
285, 2000.

[2] K. Waters, “A muscle model for animating three-
dimensional facial expressions,” Computer Graph-
ics (SIGGRAPH’87), vol. 21, pp. 17–24, 1987.

[3] B. Parǐsa, “The talking head,” Master Thesis
Project 2, Department of Computer Science and
and Engeneering, Slovak University of Technology,
2003.

[4] J. Ostermann, “Animation of synthetic faces in
mpeg-4,” Computer Animation,, pp. 49–51, 1998.

[5] J. Y. PeiHsuan Tu, IChen Lin, “Expression detail
mapping for realistic facial animation,” 2003.

[6] I. L. PeiHsuan Tu, “Expression detail mapping for
realistic facial animation,”

[7] M. Horniak, “Program for the visual simulation of
mimics when speaking,” Master Thesis. Depart-
ment of Computer Science and and Engeneering,
Slovak University of Technology, 1990.

