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Gábor Jakab†

Department of Control Engineering and Information Technology
Budapest University of Technology

Budapest / Hungary

Abstract

This paper presents the implementation of the stochastic
radiosity algorithm on the graphics hardware. We store
the radiosity function in texels of the floating point pbuffer.
The radiosity function is updated in each iteration. When
converged, the radiosity function is mapped onto surfaces
by traditional texture mapping. Our goal is to enable in-
teractive radiosity style rendering of scenes with moving
objects and/or light sources.
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1 Introduction

We witness two kinds of advances of the graphics cards
and their processing units (GPU). On the one hand, their
speed is improving constantly, outperforming the Moore
law. The average computation time of a pixel, including
transformations local illumination, projection, clipping,
texturing, blending and visibility determination, is about
a few nanoseconds, i.e. close to the time of a single mem-
ory cycle. This incredible speed is the result of the massive
pipelining, the parallelization and the special ALUs along
the pipeline. For example, a GeForce 3 GPU may operate
with 800 pipeline levels, while the Intel P4 processor has
at most 20. The pipeline is broken to four parallel chan-
nels at difficult parts, and ALUs along the pipes can handle
four floating point values in parallel and execute complex
operations such as the multiplication of a4× 4 matrix and
a 4-dimensional vector.

On the other hand, the fixed pipeline has been developed
further and has been turned to be partially programmable,
thus the burnt in algorithms can be replaced by user speci-
fied ones. Two phases of the pipeline have become pro-
grammable, the vertex and pixel processing units (fig-
ure 1). Vertex processing, which was originally responsi-
ble for vertex transformation and local illumination com-
putations at the vertices, can be controlled by avertex
shaderprogram. Pixel processing, which originally com-
puted texturing, can be governed by apixel shaderpro-
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gram. The programmability together with the high speed
have made many researchers think of how special, non-
local illumination and even non-graphics algorithms can
be ported from the CPU to the GPU. Examples include
ray-shooting [8], Voronoi diagrams, FFT and the solution
of linear equations, etc. (see http://www.gpgpu.org). In
[12] the method of solving Fredholm type integral equa-
tions of the second kind by the GPU is presented.

This paper discusses the implementation tricks of this
method. The selected integral equation is the rendering
equation describing the diffuse global illumination prob-
lem. Thus we use the graphics hardware, which was de-
signed for local illumination rendering, to solve the global
illumination problem.

When porting an algorithm onto the GPU we have to
implement three programs, one for the CPU usually in
C++, one for the vertex shader, and one for the pixel
shader. Vertex and pixel shaders can be programmed in
assembly, in Cg, the OpenGL shading language or in the
high level shading language of DirectX. We used the Cg
programming language [1].

1.1 Limitations and capabilities of the
graphics hardware

The difficulty of the porting comes from the following re-
strictions. Vertex and pixel shaders form a stream pro-
cessing architecture, where CPU feeds the vertex shader,
which only modifies data items. Vertex shader results are
passed to pixel shaders that can read textures and can write
only their target pixeĺs color (and/or depth). Only pixel
shaders can access memory (textures), but their program
size, instructions and the number of texture accesses are
limited.

If the target pixel could only be in the frame buffer, then
the limited number quantization levels (frame buffers usu-
ally have 8 bit precision per color channel) may pose prob-
lems.

Fortunately modern GPUs also come with apixel buffer
(or pbuffer), a virtual frame buffer that we can render im-
ages to. The pbuffer can store floating point values and it
is also a possibility to bind the pixel buffer to a texture. It
can be double buffered, and thus it can manage two im-
ages. The application of a pixel buffer in OpenGL is the



CPU primitive
assembly

vertex
shader

(transform
&

lighting)
memory

projection
&

clipping

linear
inter-

polation

pixel
shader

(texturing)

texture
memory

blending &
rasterop &
visibility

z-buffer
memory

raster
memory

very slow !!!

graphics card

Figure 1: GPU architecture including vertex and pixel shaders

following.

1. Create a pixel buffer. Initialize it with size, pixel and
texture parameters.

2. Change the rendering context from the frame buffer
to the pixel buffer.

3. Render geometry.

4. Change the rendering context from the pixel buffer to
the frame buffer.

When the content of the pbuffer is used later on, we can
bind it to a texture. Nothing can be rendered to the pixel
buffer until it is released. When the pbuffer is released, we
can render into it again, and create dynamic texture effects.

The advantages of rendering into such a buffer are
twofold. There is no need to upload the texture infor-
mation to the CPU memory through the AGP bus, which
would be slow compared to the GPUs video memory read,
and unnecessary if we only need to render a texture. There
is also the possibility of rendering 32 bit floating point
precision images to this buffer. These textures are useful
when we are rendering high dynamic range images and
using high precision texture mapping.

Reading back any data to the CPU either from the frame
buffer or from the pbuffer destroys pipeline efficiency, thus
should be avoided. Meeting all these limitations is the real
challenge of GPU programming.

2 Solution of the rendering
equation

Global illumination algorithms aim at the solution of the
rendering equation. For the sake of simplicity, let us as-
sume that the surfaces are diffuse. In this case, the render-
ing equation

L(~x) = Le(~x) + (TfrL)(~x)

expresses the radianceL(~x) of point ~x as a sum of the
emissionLe(~x) and the reflection of all point radiances

that are visible from here. The total reflection of the radi-
ance of visible points is expressed by an integral operator

(TfrL)(~x) =
∫

S

v(~x, ~y) ·L(~y) · fr(~x) · cos θ′~x · cos θ~y

|~x− ~y|2 d~y,

(1)
which is also called as thelight transport operator. In this
equationS is the set of surface points,v(~x, ~y) is the mutual
visibility indicator, which is 1 if points~x and~y are visible
from each other and zero otherwise,fr is the BRDF and
θ′~x andθ~y are the angles between the surface normals and
the direction between~x and~y.

The solution of the rendering equation requires general
purpose instructions and is thus usually computed on the
CPU. However, this is rather slow, and the requirements
of interactive rendering cannot be met. Our goal is to take
advantage of the huge computation power of the GPU for
the solution of the rendering equation. In order to do so,
we transform the algorithm according to the capabilities of
the GPU.

The CPU-based solution algorithms can be classified as
random walk [6] and iteration techniques. The GPU sup-
port of random walk algorithms has been examined in [8].
Since iteration algorithms are conceptually closer to local
illumination, which is originally supported by GPUs, we
believe that iteration algorithms are better candidates for
GPU implementation.

Iteration techniques are based on the fact that the so-
lution of the rendering equation is the fixed point of the
following iteration scheme:

Lm = Le + TfrLm−1.

If this scheme is convergent, then the solution can be ob-
tained as a limiting value:

L(~x) = lim
m→∞

Lm(~x).

Iteration simultaneously computes interaction between all
surface elements, which is hard to implement in the GPU.
The first attempt to port radiosity algorithm applied there-
fore Southwell iteration, which reduced the number of it-
erations [5]. This algorithm inherited the quadratic com-
plexity of the original progressive radiosity and is quite
complicated to implement.



We think that porting should also include the transfor-
mation of the original algorithm, to take into account the
capabilities of the GPU. We propose that randomization
offers a general strategy for such transformations. The
formal basis of such approaches is the stochastic iteration,
which was originally proposed for the solution of the lin-
ear equations, was presented in [7, 9, 4], then extended for
the solution of integral equations [10, 11]. Stochastic iter-
ation means that in the iteration scheme a random transport
operatorT ∗fr

is used instead of the light-transport operator
Tfr

. The random transport operator has to give back the
light-transport operator in the expected case:

Lm = Le + T ∗fr
Lm−1, E[T ∗fr

L] = Tfr
L.

Note that such an iteration scheme does not converge,
but the iterated values will fluctuate around the real solu-
tion. To make the sequence converge, all previous iterated
values are averaged:

L̃m =
1
m
·

m∑

i=1

Li =
1
m
·(Le+T ∗fr

L̃m−1)+
(

1− 1
m

)
·L̃m−1.

(2)
Iteration works with the complete radiance function,

thus its temporary version should be stored somehow.
CPU algorithms usually use finite-element methods based
on the decomposition of surfaces to triangular patches.
Since in stream processing patches are processed indepen-
dently, we store the radiance function in textures similar to
the method of [3].

Having introduced the basic concepts we discuss the ap-
propriate selection of the random iteration scheme.

3 Perspective ray-bundle shoot-
ing on the GPU

Perspective ray-bundle shooting chooses a point randomly
and sends the radiance of this point from here towards all
directions [2, 12]. If point~y is selected with probability
densityp(~y), then the random transport operator is

(T ∗fr
L)(~x) =

1
p(~y)

· v(~x, ~y) ·L(~y) · fr(~x) · cos θ′~x · cos θ~y

|~x− ~y|2 .

(3)
It is easy to prove that this random operator really gives
back the real transform operator in the expected case. In
order to realize this random transport operator on the ra-
diance function stored in a texture, two tasks need to be
solved, including the random selection of a texel identify-
ing point~y, and the update of the radiance at those texels
which correspond to points~x visible from~y.

3.1 Random texel selection

According to importance sampling, it is worth setting the
selection probability proportional to the integrand. Unfor-
tunately, this is just approximately possible, and the point

selection probability is set proportional to the radiance of
the selected texel. If the light is transferred on several
wavelengths simultaneously, the luminance of the radiated
power should be used. Thus the selection probability of
point~y is:

p(~y) =
L(Lj)

Φ
, Φ =

∑
L(Li)∆Si,

where texelj corresponds to surface point~y, L is the lu-
minance of a spectrum represented by red, green and blue
components,Φ is the luminance of the integrated radiance,
and ∆Si is the area corresponding texeli. Note that if
uniform parametrization is used then∆Si is similar to all
texels.

In the current implementation we read back the radios-
ity map and apply a linear search to locate a random pixel.
First the sum of the total luminance of all pixels is com-
puted. This value is multiplied by a random value dis-
tributed in the unit interval. Then the luminance of the
array elements is started to be summed, and the running
sum is compared to the random luminance. When the run-
ning sum gets greater than the random value, the texel is
found. It is easy to see that this selection scheme finds a
texel proportionally to its luminance.

Figure 2: Visibility array showing the corresponding
patches for each pixel. Patch index is encoded in texel
color. (We are using floating point textures.)

When the texel is obtained, the surface point corre-
sponding to it should be found. To support this opera-
tion we use a texture, called visibility array, that stores the
patch index in each texel (figure 2).

When we implemented this scheme and made measure-
ments we got shocking results. This selection algorithm
took almost 10 times longer than all other elements of ren-
dering, thus this is the bottleneck of the algorithm.

After that we replaced this method by a non-linear
search with a GPU algorithm. The random selection is
supported by themipmapping hardware. When the texture



corresponding to the current radiance function is updated,
the GPU is asked to compute the complete mipmap hier-
archy. The mipmap can be imagined as a quad-tree, which
allows the selection of a texel inlog2 R steps, whereR
is the resolution of the texture. The top level of this hi-
erarchy contains the average of all texels. The luminance
of this value is multiplied by a random number uniformly
distributed in the unit interval and also by four since on
the next level this texel is decomposed to four texels. Then
the next mipmap level is retrieved and the four texels cor-
responding to the upper level texel are obtained. The lu-
minance values of the four pixels are summed, the run-
ning sum is compared to the value obtained on the higher
level. When the running sum gets larger, the summing is
stopped. A new selection value is obtained as the differ-
ence of the previous value and the luminance of all texels
before the found texel. Then the same procedure is re-
peated recursively on the lower mipmap levels. This pro-
cedure terminates at a leaf texel with a probability that is
proportional to its luminance.

Unfortunately the opengl does not support the automatic
mipmap generation for floating point textures what we
used for radiosity array so we have to generate mipmap
levels with a fragment program in ten iterations, because
we used radiosity array with a resolution1024 · 1024. It
is a bit slow. We use the following cg program to generate
one mimap level:

float3 col=tex2D(radiosity_map,
float2(texcoord.x,texcoord.y-recres)).rgb;

float3 col1=tex2D(radiosity_map,
float2(texcoord.x-recres,texcoord.y-recres) ).rgb;

float3 col2 =tex2D(radiosity_map,
float2(texcoord.x-recres,texcoord.y) ).rgb;

float3 col3= tex2D(radiosity_map, texcoord).rgb;

return col + col1 + col2 + col3;

Where recres means the reciprocal of the current
mipmap resolution. The value of recres is1/1024 in the
first and after the tenth iteration it is1. The different
mipmap levels are stored in different textures. We also
made a fragment program which implements the random
choice from the mipmap what we explained in the section
above.The pixel shader program:

bool isRandom=0;

float2 retval; float2 retval2=float2(texcoord.x-
recres,texcoord.y);

float2 retval3=float2(texcoord.x,texcoord.y
-recres);

float2 retval4=float2(texcoord.x-recres,
texcoord.y-recres);

float3 col1=tex2D(texture,texcoord).rgb;

float3 col2=tex2D(texture,retval2).rgb;

float3 col3=tex2D(texture,retval3).rgb;

float3 col4=tex2D(texture,retval4).rgb;
float colorsum;

float colorsum1=col1.r+col1.g+col1.b;

float colorsum2=col2.r+col2.g+col2.b;

float colorsum3=col3.r+col3.g+col3.b;

float colorsum4=col4.r+col4.g+col4.b;
if(colorsum1>rand_times_last_max) {

colorsum=colorsum1;
retval=texcoord;
isRandom=1;

} if(colorsum2>rand_times_last_max){
colorsum=colorsum2;
retval=retval2;
isRandom=1;

} if(colorsum3>rand_times_last_max){
colorsum=colorsum3;
retval=retval3;
isRandom=1;

} if(colorsum4>rand_times_last_max){
colorsum=colorsum4;
retval=retval4;
isRandom=1;

} if(!isRandom){
colorsum=max(colorsum1,colorsum2);
colorsum=max(colorsum,colorsum3);
colorsum=max(colorsum,colorsum4);
if(colorsum==colorsum1) retval=texcoord;
if(colorsum==colorsum2) retval=retval2;
if(colorsum==colorsum3) retval=retval3;
if(colorsum==colorsum4) retval=retval4;

} return float3(retval.x,retval.y,colorsum );

In the first iterationrandtimeslastmaxequals the full lu-
minance of all pixels. This function chooses one texel for
the next iteration, returns with the coordinates of this texel
and the full luminance of this texel. These values will
be passed for the next iteration astexcoord.x, texcoord.y,
randtimeslastmax. This algorithm will stop after the tenth
iteration.

3.2 Update of the radiosity texture

The points visible from~y can be found by placing a hemi-
sphere or a hemicube around~y, and then using the z-buffer
algorithm to identify the visible patches. Both hemicube
and hemisphere approaches have advantages and disad-
vantages. If hemicube is used, then we have to render the
whole scene five times, while hemisphere requires only
one rendering. However, the GPU works with triangles,
but the hemispherical projection results in shapes with el-
liptical boundaries. The approximation of these elliptical
segments is accurate only if the scene is highly tessel-
lated. Thus we can conclude that the hemisphere requires
only one rendering but needs higher tessellation. We used
hemispherical projection in our implementation.

Note that hemispherical projection requires specialized
vertex processing since the local illumination pipeline uses
a rectangular and not a hemisphere window. Since it turns
out just at the end, i.e. having processed all patches by



the z-buffer algorithm, which points are really visible, the
application of the random transfer operator requires two
passes. In the first pass the center and the base of the hemi-
sphere are set to~y and to the surface at~y, respectively,
then the scene is rendered assuming of a point equal to the
depth value of this point. Having computed the image, the
result is stored in avisibility texture, calledvismap(fig-
ure 3).

Figure 3: Depth image taken from the shooter point

To demonstrate how the hemispherical projection can
be done with the GPU, the vertex program is shown in
the followings, wheremodelviewis the eye transform of
the camera put at~y, IN.positionis the current vertex, and
OUT.hposcontains the normalized pixel coordinates and
the depth value. Based on the front (fp) and back clipping
distances (bp) the depth value is normalized to the [-1..1]
interval for z-buffering and theOUT.zdepthnormalized to
the [0..1] interval to serve as the color value later in the
pixel shader:

float3 dir = mul(modelview, IN.pos).xyz;
OUT.hpos.xy = normalize(dir).xy;
OUT.hpos.z = -(2*dir.z + bp + fp) / (bp - fp);
OUT.hpos.w = 1;
OUT.zdepth = -dir.z / bp; // [0,1]

In the second pass the same transformation is carried
out. The BRDF and emission values are also passed, and
now we render into the rectangle of the radiosity texture
(figure 4).

The vertex shader is set according to this transformation
and also prepares the value of the randomly transported
radiance in variable according to equation 3:

Lref = Lshoot · cos θ′~x · cos θ~y

|~x− ~y|2 ,

Lshoot =
L(~y)
p(~y)

=
L(~y)

L(L(~y))
· Φ.

Figure 4: Radiosity map

The CPU determinesLshootand passes it to the vertex
shader, which computesLref in the eye space where~y is
in the origo:

OUT.hpos.xy = 2 * IN.texcoord.xy - float2(1,1);
OUT.hpos.z = 0;
OUT.hpos.w = 1;
OUT.texcoord = IN.texcoord;
float3 x = mul(modelview, IN.pos).xyz;
OUT.zdepth = -x.z / bp;

// y is in the origo of eye space
float3 ytox = normalize(x); // dir from y to x
float xydist2 = dot(x, x); // |x - y|ˆ2
float cthetay = -ytox.z; // normal(y) = axis -z
float3 tnorm = mul(modelviewIT, IN.normal).xyz;
float cthetax = dot(tnorm, -ytox);
OUT.emission = IN.emission;
OUT.brdf = IN.brdf;
OUT.Lref = Lshoot*cthetax*cthetay/xydist2;
OUT.viscoord.xy = (ytox.xy + float2(1,1)) / 2;

Note that the normal is transformed with the inverse
transpose of the camera transform, because this way we
can ignore any translation.

When a pixel is shaded, it is checked whether this pixel
has the same depth as stored in the visibility map (figure 3)
at the corresponding texel, that is, whether or not this pixel
will be kept by the z-buffer [5]. The pixel shader code re-
sponsible for this check, for the multiplication with the
visibility indicator and the BRDF (equation 3), for the up-
date of the radiosity texture, and also for the averaging
operation (equation 2), is the following:

float z = tex2D(vis_map, viscoord).x;
float visible = (abs(zdepth - z) < 0.05);
return tex2D(rad_map, texcoord).rgb * (1-1/m) +

(emission + visible * Lref*brdf)/m;

The program gets the visibility texture coordinates (vis-
coord) and the patch index,emission, BRDF and the tex-
ture coordinate (texcoord) of the target point, as well as the
prepared transported radianceLref from the vertex shader.
Iteration numberm is passed directly from the CPU as a
uniform parameter.



3.3 Presenting the results

The final results can be seen from an arbitrary viewpoint if
the vertex and pixel shaders are set to the normal operation
(figure 5). The vertex shader computes the modelview-
projective transformation of the vertices, while the pixel
shader finds the texel corresponding to the computed tex-
ture coordinates.

Figure 5: The rendered scene after 50 iterations

4 Implementation results and
conclusions

Figure 7: Running time of the proposed algorithm (pbuffer
size is512 · 512)

The proposed method has been implemented on an ATI
Radeon 9800 Pro graphics card in C++/OpenGL/Cg envi-
ronment. In the current implementation the random selec-
tion is made by the CPU and all other operations by the

Figure 8: Running time of the proposed algorithm (pbuffer
size is1024 · 1024)

GPU. The implementation has been tested with the Cor-
nell box scene and we concluded that a single iteration
requires 120-150 msec for ten to ten thousand vertices and
for 512 · 512 resolution radiosity maps. This is compa-
rable to the CPU implementation. Having looked more
deeply into the time requirements of different phases, we
concluded that this embarrassing time is due to the reading
back of the pbuffer. If we can use automatic mipmap gen-
eration and for floating point textures our algorithm will
be much more faster. We can speed up our algorithm if
we read the pbuffer in the first few and also in every tenth
iteration, but the huge time of the search remains. Ac-
cording to our measurements, the running time can be re-
duced to its tenth, i.e. an iteration cycle would need only
20-30 msec. This would be 4-5 times faster than the opti-
mized CPU implementation using only the classical graph-
ics pipeline for visibility checking.

The drawback of this algorithm comes from the texture
based radiosity representation, which can result in dot arti-
facts. This problem will be attacked by interpolation sim-
ilarly to [3].

5 Summary

A method is presented to perform global illumination cal-
culations on modern graphics hardware. This should re-
duce the time to perform radiosity precomputations. Pixel
buffer readback from the graphics hardware is identified
as the major bottleneck of the proposed approach.
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Figure 6: The radiosity map after 1, 4 and 50 iterations
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