
Fast Focus+Context Visualization
of Large Scientific Data

Martin Gasser∗

VRVis Research Center, Vienna, Austria

Abstract

Visualization of high-dimensional and time-dependent
data, resulting from computational simulation, is a very
challenging and resource-consuming task. Here, feature-
based visualization approaches, which aim at a user-
controlled reduction of the data shown at one instance of
time, proof to be useful.

In this paper, we present a framework for interactive
high- dimensional visualization and feature specification.
We put special emphasis on the design of the data access
layer and the performance optimization of the highly in-
teractive parts of our system.

Keywords: interactive visualization, focus+context visu-
alization, feature specification, large data, linked views

1 Introduction

CFD simulation (computational fluid dynamics) is a
method frequently employed to gain insight into flow phe-
nomena that cannot be experimentally analyzed (at least
not without extraordinary efforts).

For example, oxidation processes in a catalytic con-
verter are difficult to monitor in reality [4]. Typical ques-
tions would be how many toxic substances are present in
the exhaust fumes at a certain point in time or how much
soot is accumulated during its operation.

Besides the overhead for getting data samples that are
accurate enough for the representation of subject state in
an experiment, each experiment would require the con-
struction of a new prototype. So it can be stated that
computational flow simulation drastically shortens devel-
opment cycles and allows the involved engineers to opti-
mize their models before a real prototype is built.

To efficiently support users during analysis time, ad-
equate visualization of the simulation results is needed.
Complex physical and chemical processes imply large re-
sult data, since a large number of potentially interesting
data dimensions is involved. Data size also depends on
the duration and the temporal resolution of unsteady sim-
ulations. Typical sizes of data sets lie in the range from
250.000 to 1.000.000 data points, 15 data dimensions and
20 – 100 time steps. For example, a data set with 500.000

∗Martin.Gasser@VRVis.at

data points, 10 dimensions of high-precision data and 100
time steps would result in a file size of approximately
480MBytes. In the future, dataset sizes in a magnitude
of > 1.000.000 data points and noticeably more than hun-
dred time steps can be expected, resulting in file sizes of
several GBytes. Loading such a dataset entirely to system
memory usually is not a practical solution, therefore so-
phisticated data access policies are a crucial requirement.

Visualization of high dimensional and large data is a
very demanding procedure, requiring several problems to
be solved. Besides the functional requirements posed to
the software (e.g. loading/saving of feature specifications,
cached data access), several non-functional-requirements
had to be met as well:

• Visualization at interactive frame rates

• Open architecture for addition of new visualization
methods

• Best possible exploitation of hardware resources

In this paper a framework is presented, which supports in-
teractive visualization and analysis of complex data using
multiple linked views, combining approaches from scien-
tific visualization (SciVis) and information visualization
(InfoVis).

2 Concepts

Below we explain several concepts that were incorporated
in our system.

2.1 Feature-Based Visualization

Due to the large overall amount of simulation data, not all
the data can be shown simultaneously. Data reduction is a
crucial task in many visualization systems. We support a
feature based approach, enabling the user to interactively
select essential data subsets he or she wants to view in spe-
cial detail. So, the visual discrimination of data in focus
from contextual data is supported by Focus+Context visu-
alization.

Figure 1: The SimVis application, showing the flow of hot gas through an object. Two scatterplots are used to mark
regions of interest, which are then visualized in the 3D view as color coded points.

2.2 Linked Views

High dimensionality is a common challenge in informa-
tion visualization (InfoVis) that can be effectively handled
with multiple views that show the same data through dif-
ferent projections, allowing the user to discover data clus-
ters and other interesting features with an explorative ap-
proach.

InfoVis usually is employed for the visualization of eco-
nomic and other rather abstract data without any spatial
dimensions. Scientific visualization (SciVis) usually deals
with spatial data and the reconstruction and visual en-
hancement of sampled or synthetic geometry. By linking
InfoVis and SciVis views, it is possible to locate a data
item in the data domain as well as in 3D.

Linked InfoVis/SciVis-views can also substantially de-
crease the perceptual complexity of visualizations, espe-
cially when the data dimensionality increases. Multiple
views can be used to localize data items in multiple pro-
jections of the data domain as well as in the spatial do-
main. A brushing widget can be used to mark regions of
interest in one view, triggering an immediate update in the
other views. The here employed technique is also called
Linking&Brushing [3].

Figure 1 shows an overview of the application GUI. Two
scatterplots and one 3D rendering view are used. The vi-
sualized dataset shows the flow of hot gas through sample
geometry. The views show the data distribution of various
dimensions.

2.3 Feature Definition

In addition to the already existing semi-automatic ap-
proaches for feature extraction (see Post et al. [11] for
an overview), we follow a highly interactive approach.
Users can brush [1, 12] data in the various views by
directly pointing at the data with an appropriate device
(e.g. mouse) and selecting the regions of interest. Sim-
ple brushes are defined by giving lower and upper bounds
for data values.

Simple brushes can be logically combined (see section
3.1 for details) into more complex brushes (i.e. a set of
data points that satisfy two or more constraints) and it
is not only possible to say if something is important but
also how important it is by employing a technique called
Smooth Brushing [3].

Conceptually, a brush maps each (n-dimensional) data
item to some degree of interest (DOI) [6], hence this map
is called the degree-of-interest function. A possible way of
how to implement this is a mapping from each data item
to a value from the continuous unit interval [0, 1], where 1
means maximal importance (or full focus) and 0 means no
importance (or context).

During visualization, the views can perform fo-
cus+context discrimination by modulating the color and
the opacity of data items with respect to their DOI values.

To sum up, brushes are represented as logical combi-
nations of ranges on the individual data dimensions. Like
from simple range selections, a DOI can be derived from

FDL

Feature Set
Implicit OR

Feature Description
Implicit AND

ComplexSelection
AND/OR

Simple Selection
on Temperatur

Simple Selection
on Velocity

Simple Selection
on Time

Other Feature
Sets

DOI

DOI

Other Feature
Components

Feature Component
Implicit AND

DOI

Other Feature
Descriptions

Other
Selections

Specification
View

Visualization
View

Figure 2: A example FDL tree with associated DOI

the hierarchical combination of simple brushes, as well.
Since this hierarchical structure allows feature defini-

tions of arbitrary complexity in a syntactically and seman-
tically well-defined manner, it was called Feature Defini-
tion Language (FDL) [2]. In Figure 2, an example FDL
tree is depicted.

Feature Definition Language

A typical FDL specification has a tree structure, as de-
picted in figure 2. The meaning of the different node types
in the hierarchy can be best described in terms of logical
set operations. Since we need not only a binary classifi-
cation of features, membership and logical combinations
were designed as fuzzy set operations (see section 3.1).

The bottom level of the hierarchy is formed by Simple-
Selections. One SimpleSelection constrains the valid data
range for data points in one dimension. The output of a
SimpleSelection is a DOI function that classifies all data
points that match the criterion as belonging to the feature.

A ComplexSelection can compute the intersection, the
union, or the complement of sets of points, resulting in a
DOI function that classifies all data points matching the
combined criterions of the child nodes. For an illustration
of the possible set operations, see figure 3. Since complex
selections can be recursively combined, feature specifica-
tions of arbitrary complexity and dimensionality can be
constructed.

Feature Components, Feature Descriptions, and Fea-
ture Sets are specializations of Complex Selections and
were designed to provide additional support for the needs
of users in analysis sessions.

Typically, a user specifies one feature in high-
dimensional space by exploring the data in multiple pro-
jections of that space and brushing interesting structures in
selected projections. A brushing of data items in one view

U

=

U =

NOT =

Figure 3: Possible set operations

is then immediately reflected in the other views by color-
ing the affected points. Individual features are identified
with Feature Descriptions. Each view involved in the def-
inition of a feature is bound to a Feature Component, pro-
viding a bidirectional mapping between views and FDL
tree nodes. Additionally, the user may view the combina-
tion of all features she or he specified in a top level view
(usually the 3D view), which is provided by a Feature Set.

In order to distinguish points which are marked only in
the current view (but are not present in the combination of
constraints as generated by other views) from points that
are marked in all views, a multi-level DOI concept was in-
troduced. Views used to specify features show two point
sets as described by DOI functions, one resulting from
the Feature Component which the view is bound to and
one from the Feature Description that is build up by the
individual components. View discrimination is then per-
formed by coloring data points from the Feature Set in red
tones, while data points from the Feature Component only
are drawn in yellow tones (see the scatterplot views in Fig.
1 for an example).

External Representation

To store and load feature definitions, an external represen-
tation of the FDL has been designed. Due to the inherent
hierarchical nature of the FDL, it has been implemented
as an XML [17] application. Since XML was designed
to be human readable, this realization enables power users
to script feature definitions by directly manipulating the
XML files with an ordinary text editor or a special XML
editing application.

However, the average user does not formulate FDL
statements directly. The views automatically produce fea-
ture definitions during user interaction. Sometimes, this is
not fully appropriate (e.g., if known data boundaries have
to be entered with high precision).

To provide mid-level feature manipulation without the
need to start an external text editor, an additional view
has been designed that shows the tree structure directly
in a tree-like interface. Tree node attributes (like selec-
tion bounds or the different logical combinations) can be
manipulated manually and entire subtrees can be moved
with standard interaction techniques like copy&paste and
drag&drop.

Feature Definiton
FrameworkData access layer

Views

HUM File

Figure 4: Main software components

2.4 Time Dependent Data

Special UI elements had to be designed to support the han-
dling of time-dependent data. It is now possible to define a
specific time interval in each view. Data from this interval
is then visualized in the view, with successive time steps
painted one over the other.

To allow more specific selections in the time dimension,
we have added the time values for each data point as a first
order dimension.

2.5 Data File Format

We have defined the HUM (High performance unstruc-
tured mesh) file format for storing the simulation data and
the corresponding geometry. A separate converter appli-
cation has been implemented to enable the conversion of
data from our main industrial partner in this project to our
own data format. The internal representation of the data
(see section 3.3) is closely related to that format.

3 Software Architecture

Figure 4 shows the data flow between the main software
components. The Data Access Layer implements trans-
parent data access and caching. The Views and the Feature
Definition Framework perform bidirectional communica-
tion, relying heavily on the data access services.

3.1 Feature Definition Framework

The FDL framework is built around a hierarchical
tree structure which logically combines simple one-
dimensional selections to more complex feature specifica-
tions following a descriptive and modular approach.

From each node in the tree, a degree of interest function
can be recursively derived.

Each SimpleSelection (forming a leaf of the tree) de-
fines a trapezoidal DOI function (see Fig. 5) that can be
interpreted as a fuzzy membership function.

0

D
O

I
valu

es
D

ata
valu

es

1
2
3
4
5
6
7
8
...

5.1 0.01
0.0
1.7
100
47.2
23.1
3.2
0.1
-3.0
...

0.0
0.0
0.0

0.34
1.0
0.0
0.0
0.0
...

80.05.0 15.0 30.2

D
eg

re
e

of
 in

te
re

st

Data values

0

1

Min = -3.0 Max = 100.0

Figure 5: On the lowest level of the feature definition
framework, each n-dimensional data point is mapped to
a DOI value, according to its value in one dimension

DOI functions derived from simple selections can be
logically combined to selections of higher dimensional-
ity. Logical operations are currently realized as fuzzy min-
imum t-norms (for AND) and maximum t-conorms (for
OR) and the complement on one (for negations) [8].

d1 ∧ d2 = min(d1, d2)
d2 ∨ d2 = max(d1, d2)
¬d = 1 − d

3.2 Views

Each feature specification stores a reference to the view
which created it and views can be opened and closed on
demand. Changes to tree nodes fire events that are propa-
gated up the tree, resulting in an update of each view as-
sociated to a tree node in the path from the affected node
to the root. The views act as Observers [7] that are noti-
fied whenever changes occur in the observed objects (fea-
ture specifications). Hence the feature specification hier-
archy can be seen as a hierarchic hub, forwarding update
requests only to those views that are affected by it and real-
izing implicit linking of all views that belong to the current
subtree.

In the following, a short overview of some of the views
that we already integrated into our system, is given.

Scatterplot

A (2D) scatterplot shows two-dimensional projections of
the data space. Two components of an n-dimensional data
point are interpreted as coordinates in a Cartesian coordi-
nate system. Figure 6 shows a scatterplot that draws the
temperature values of the data points versus their relative
pressure values. Points with medium relative pressure and
high temperature have been classified as features with a
smooth brushing widget.

Figure 6: A cluster in the combined distribution of tem-
perature and pressure is selected in a scatterplot

Figure 7: Peaks in the distribution of velocity in x-direction
are selected in a histogram

Figure 8: The 3D view, showing hot regions in a catalytic
converter

File system

Memory pool

Data channels

Temperature

Velocity

Pressure

...

Scatterplot

3D view

Figure 9: Overview of the data access layer

Histogram

A histogram counts the frequencies of occurrences of data
values in a particular data dimension. Since this is not
directly possible for continuous data, the data range has to
be segmented into bins (small subranges) that represent a
discretized version of the data space.

We implemented TimeHistograms as described in
Kosara et al. [9]. TimeHistograms offer special support for
time-dependent data, like visualization of trends or three-
dimensional histograms with time as third axis (see figure
7).

3D View

The 3D view is, as opposed to the previous two InfoVis
views, an extended SciVis view. It shows the distribution
of the data points classified as belonging to a feature in 3D
space but also gives hints about their position in data space
via customizable color coding (e.g., the temperature range
of points can be mapped to a color gradient from red to
green).

Since continuous DOI functions are supported, the
opacity of the displayed points is modulated by the corre-
sponding degree-of-interest values. Data points with high
DOI values are drawn opaque while a low degree of inter-
est results in a rather translucent appearance, discriminat-
ing data in focus from context data.

In figure 8, a 3D view shows hot and fast regions in a
simulation of a catalytic converter.

3.3 Data Access Layer

As already stated, the data access part of the application is
of particular importance for the efficient operation of the
software. Figure 9 illustrates the main system components
and the data flow between them.

In our data representation, data from one time step is
stored in Channels. The channel class encapsulates an ar-
ray of data values and provides bounds-checked accessor
functions for those values. Multiple Channels can be col-
lected in a TimeChannel. A TimeChannel organizes in-
dividual time steps, represented as channels and provides
some meta data. Basically, one dimension can be associ-
ated with a TimeChannel.

Channels are implemented following a Virtual Proxy
pattern [7], making transparent lazy loading (activating)

ChannelProxyConcreteChannel

ChannelInterface

View

CacheChannelPool

Figure 10: The components associated with the data acti-
vation process

of data possible. Figure 10 illustrates the data activation
process and the associated components.

Due to the fact that it is impossible (or at least very ex-
pensive in terms of system resources) to leave all channels
activated, a caching algorithm based on a LRU queue has
been implemented.

The following requirements were the cornerstones for
the design of the caching subsystem:

• Minimize the usage of the page replacement system
provided by the OS

• Minimize the number of harddisk read accesses

• Minimize allocation/deallocation of large memory
blocks

Activated ChannelProxies are stored in a global queue,
with the last accessed proxy always at the head of the
queue. Whenever a ChannelProxy is accessed, the caching
layer ensures that it is either moved to the front of the
LRU queue or activated and then inserted at the front of
the queue. If the channel has been already activated, the
function immediately returns.

The activation function itself tries to get the least re-
cently used ChannelProxy from the queue and reuses its
ConcreteChannel. If the channel stores read-only data
from a file, the Cache can just reload the data if it is
needed. Generated data (e.g., data that has been derived
from existing data by applying a filter) is swapped out to
another file if needed.

If the queue is empty – because all data channels are cur-
rently in use – the caching layer allocates an empty Con-
creteChannel from the ChannelPool. The acquired Con-
creteChannel is assigned to the ChannelProxy, which is
then loaded with the requested data.

In the following, the caching algorithm is sketched.

if (not QueueIsEmpty()) {
LRUProxy = RemoveLastQueueItem();
SwapOut(LRUProxy);
EmptyChannel = GetChannel(LRUProxy);
AssignChannel(aProxy, EmptyChannel);

}
else {

EmptyChannel = GetChannelFromPool();
AssignChannel(aProxy, EmptyChannel);

}

SwapIn(aProxy);

4 Implementation issues

The application was implemented in C++ (Visual C++
.NET) and Java (j2sdk 1.4.2). We combined the advan-
tages of C++ – mainly the high optimizability of the code
– and the advantages of Java – rapid user interface design
– as good as possible.

Essentially, all performance-critical parts were imple-
mented in C++. These parts include low level data ac-
cess, OpenGL rendering, DOI calculation, and data filter-
ing. The user interface components were implemented in
Java.

4.1 Java-native Binding

We implemented the binding of native C++ object in-
stances to their corresponding Java objects with JNI [15]
and an adapted proxy [7] pattern. All Java objects that
have a native counterpart, act as proxies by just forward-
ing requests and caching values for succeeding read oper-
ations.

Basically, our concept is simple: A Java object stores
the address of its corresponding C++ native object. When-
ever a method of this object is called, another method with
the same signature, but marked as native, is called; this
method is implemented in plain C (since JNI is a C API).
In this C function, a pointer to the corresponding C++ na-
tive object is constructed from the address stored in the
Java object and the object property is set. The obvious
drawback of this solution was the large coding overhead
for the C wrapper functions (which could be easily avoided
with a code generation utility).

Since it was a requirement to use OpenGL for the ren-
dering part of the views, we needed a way of how to na-
tively render to Java UI components. Since the JNI API
did not expose native UI handles from the AWT before the
arrival of JDK1.3, the first prototype of the system used
the GL4Java API. Due to the developement stop of this
OpenGL implementation Java we soon decided to move
to a less proprietary solution. The JAWT interface (Java
Abstract Windowing Toolkit native interface) introduced
calls that returned handles to native windowing resources
with the release of JDK1.3, which made it possible to cre-
ate OpenGL rendering contexts [13].

5 Performance Optimizations

5.1 High Level Optimizations

The first version of the software was strictly synchronous,
resulting in a blocking behaviour due to the fact that 90%
of the computing time was spent in the calculation of the
DOI values and mouse interaction continuously triggered
a recomputation of the DOI values. Large datasets left
the system completely unusable because mouse interac-
tion was impossible.

Our solution was to decouple the DOI computation from
the user interface in a main thread and a DOI computation
thread. The following pseudo code segment illustrates the
algorithm:

function Recompute(Node) {
CancelRunningThreads();
SetPathToRootDirty(Node);
RunInThread(RecomputeRec(Root));

}

function RecomputeRec(TreeNode) {
foreach (child of TreeNode) {

if IsDirty(child) then
RecomputeRec(child);

}
ComputeValues(TreeNode);
SetClean(TreeNode);

}

During the recursive depth-first traversal of the tree, each
completed node fires an update event for the registered
views.

5.2 Algorithmic Optimizations

An important optimization came with the algorithm in the
previous section: Only affected tree paths are recomputed
because only the path from the updated node to the root is
set dirty.

The fundamental DOI functions in the simple selections
are computed by calculating the value of the trapezoidal
function for each data value in the corresponding data di-
mension. A straightforward implementation would loop
through all the values and calculate the DOI value for each
of them. Since the trapezoidal function can be divided into
4 regions we can split up the algorithm as well. In a pre-
processing step, we have to sort the data along each dimen-
sion vk. This can be efficiently done with double-indexing
via a permutation array pk, so that vk[pk[i]] ≤ vk[pk[i+1]]
is true for each dimension. Now we can perform binary
search on each data dimension and find the indices of the
bounds. Then we can construct the trapezoidal function
with two linear interpolations and one constant period.

Brush(DOI, {lowerSoft, lower,
upper, upperSoft}) {

IndexLowerSoft = FindFirstGreaterThan(

SortedData,lowerSoft);
IndexLower = FindFirstGreaterThan(

SortedData,lower);
IndexUpper = FindLastSmallerThan(

SortedData,upper);
IndexUpperSoft = FindLastSmallerThan(

SortedData,upperSoft);

InterpolateZeroToOne(
DOI,IndexLowerSoft,IndexLower-1);

SetToOne(DOI,IndexLower,IndexUpper);

InterpolateOneToZero(
DOI,IndexUpper+1,IndexUpperSoft);

}

This yields a runtime of 4∗O(log2(n)) (versus O(n) with
the straightforward approach).

5.3 Low Level Programming Optimiza-
tions

DOI computation

Due to the fact that the DOI computation subsystem is
based mainly on componentwise vector arithmetics, it was
possible to highly optimize that part of the software by
taking into account standard optimization techniques (loop
unrolling, code inlining) as well as special features of the
hardware the system was developed for. Our current pro-
duction environment has the following technical details:

• OS: Windows XP Professional

• Intel Pentium 4, 2.8GHz

• 333 MHz FSB

• Hyperthreading support enabled

• Geforce FX 5900

• 2GB RAM

• 2x80GB S-ATA RAID0

Intel processors from the Pentium III upwards support a
powerful SIMD instruction set (Streaming SIMD Exten-
sions [5]) that can perform calculations on four 32 bit float
values simultaneously. It was possible to heavily optimize
the calculation of the DOI function based on this exten-
sion, since it packs 4 operations into one.

The Pentium IV supports the hyperthreading technol-
ogy [14] that offers thread-level parallelism, enabling
multi-threaded applications to make much better use of
CPU resources than single-threaded applications. There-
fore it was mandatory to implement the performance-
critical parts of our software in a multi-threaded fashion.
A quite obvious way how to do this was to partition the set
of affected time steps per brushing operation in two parts
and let two threads compute the DOI function in parallel.

3D rendering

Due to the large amount of points to be rendered for
one time step, simple immediate mode rendering of
GL POINTS is too slow. Through the employment of Ver-
tex Arrays it is possible to render mesh geometries with
1.000.000 geometry cells and more at interactive frame
rates. We also used the Vertex Buffer Objects (VBO) exten-
sion [16] that provides fine grained control over the vertex
array memory management and allows for tuning of the
caching policies for the vertex/color/index data arrays ac-
cording to their update frequencies.

Since we modulate the opacity of the rendered frag-
ments with the DOI function, the hardware z-buffer can-
not be used and rendering in back-to-front order is neces-
sary to support hardware based alpha blending. The sort-
ing is performed with an hybrid QuickSort/HeapSort algo-
rithm that has running time O(n · log(n)) in the worst case
(IntroSort, see [10]). Although the sorting performance
decreases when very large geometries are rendered, data
sizes of up to 250.000 geometry cells can be rendered in-
teractively (∼ 15 frames/second) with this algorithm. An
approach based on using an approximate ordering based
on BucketSort (running time O(n)) during user interac-
tion and exact sorting in idle periods has been considered
but not yet been implemented.

6 Conclusions

We have developed a system for the visualization and anal-
ysis of high-dimensional and time-dependent data. It al-
lows users to interactively explore data space and specify
features with multiple views. We have shown how it is
possible to handle large data sets in interactive applica-
tions on common PC hardware. Furthermore we have de-
fined an extensible and scalable feature definition frame-
work with a graphical as well as a text-based user inter-
face. This generic approach allows a wide range of appli-
cations in the fields of scientific visualization (especially
flow visualization) as well as information visualization.

We have already proven the high usability of our system
in everyday life of researchers from the field of automo-
tive engineering [4]. In the future, we hope that we can
intensify our efforts in this direction as well as in other
application areas, such as the visualization of rather ab-
stract data describing stock exchange courses and other
economic data.

7 Acknowledgements

This work has been carried out as part of the basic research
on visualization at the VRVis Research Center in Vienna,
Austria (http://www.VRVis.at/vis/), which is partly funded
by an Austrian research program called KPlus. The author
would like to thank Helmut Doleisch, Robert Kosara, and
Helwig Hauser for supervision of this work.

References
[1] R. Becker and W. Cleveland. Brushing scatterplots. Tech-

nometrics, 29(2):127–142, 1987.

[2] H. Doleisch, M. Gasser, and H. Hauser. Interactive fea-
ture specification for focus+context visualization of com-
plex simulation data. In Proc. of the 5th Joint IEEE TCVG
- EUROGRAPHICS Symposium on Visualization (VisSym
2003), pages 239–248, Grenoble, France, May 2003.

[3] H. Doleisch and H. Hauser. Smooth brushing for fo-
cus+context visualization of simulation data in 3D. In Jour-
nal of WSCG, volume 10, pages 147–154, Plzen, 2002.

[4] H. Doleisch, M. Mayer, M. Gasser, R. Wanker, and
H. Hauser. Case study: Visual analysis of complex, time-
dependent simulation results of a diesel exhaust system.
In Proc. of the 6th Joint IEEE TCVG - EUROGRAPHICS
Symposium on Visualization (VisSym 2004), Konstanz, Ger-
many, 2004.

[5] Intel Streaming SIMD Extensions. See URL: http://
x86.ddj.com/articles/sse_pt1/simd1.htm.

[6] G. W. Furnas. Generalized fisheye views. In Proc. of the
ACM CHI ’86 Conf. on Human Factors in Computing Sys-
tems, pages 16–23, 1986.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[8] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms,
volume 8 of Trends in Logic. Kluwer Academic Publishers,
Dordrecht, 2000.

[9] R. Kosara, F. Bendix, and H. Hauser. Timehistograms
for large, time-dependent data. In Proc. of the 6th Joint
IEEE TCVG - EUROGRAPHICS Symposium on Visualiza-
tion (VisSym 2004), Konstanz, Germany, 2004.

[10] David R. Musser. Introspective sorting and selection algo-
rithms. Software Practice and Experience, 27(8):983–993.

[11] F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and
H. Doleisch. Feature extraction and visualization of flow
fields. In Eurographics State of the Art Reports, pages 69–
100, 2002.

[12] M. O. Ward. XmdvTool: Integrating multiple methods for
visualizing multivariate data. In Proc. of IEEE Visualiza-
tion ’94, pages 326–336.

[13] The awt native interface. See URL: http:
//java.sun.com/j2se/1.3/docs/guide/
awt/AWT_Native_Interface.html.

[14] Hyper-threading technology architecture and microar-
chitecture. See URL: http://www.intel.com/
technology/itj/2002/volume06issue01/
vol6iss1_hyper_threading_technology.
pdf.

[15] The java native interface. See URL: http://java.
sun.com/j2se/1.3/docs/guide/jni/.

[16] Specification of arb vertex buffer object. See URL:
http://oss.sgi.com/projects/ogl-sample/
registry/ARB/vertex_buffer_object.txt.

[17] Webpage of the world wide web consortium about xml. See
URL: http://www.w3.org/XML/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

