
Virtual Cockpit: An Alternative
Augmented Reality User Interface

Alexander Terbu∗

Institute for Computer Graphics and Vision
Inffeldgasse 16/II

A-8010 Graz / Austria

Abstract

This paper presents an approach for a hierarchical graphi-
cal user interface in an Augmented Reality environment,
which allows fast and intuitive navigation even when
dealing with complex layouts. This project enhances
the “Studierstube” library by providing a head-fixed 3-
dimensional menu hierarchy as an alternative to the per-
sonal interaction panel. Although providing a natural hap-
tic feedback we have experienced different limitations in
terms of usability and flexibility by using this personal
interaction panel for application control and navigation.
This paper shows a concept work for a different user in-
terface called Virtual Cockpit providing a complete 3-
dimensional experience. Moreover, a methodology for
dealing with complex interaction layouts by introducing
a smart tree structure is also discussed.

Keywords: augmented reality, user interface

1 Introduction

Augmented Reality (AR) is a very powerful and flexible
technology by superimposing the real world with virtual
objects. The reality can therefore be enriched with addi-
tional content and information used for different applica-
tions [1]. In recent years some research groups have devel-
oped frameworks providing a library for AR-based appli-
cations [15] [11] [4]. One of these systems is the “Studier-
stube” project which is capable of rendering, tracking, in-
teraction handling and user collaboration [15]. User in-
teraction is done by using two tracked input devices, first
the so-called personal interaction panel (PIP) and second a
pencil (PEN) optionally with some mounted buttons [17].
Approaches using panels like the PIP benefit from passive
haptic feedback which is an advantage for an AR system.

However, that interaction between PEN and PIP heavily
depends on an accurate calibration of the whole AR sys-
tem. However, a well calibrated system is not often the
case because calibration of such systems is mostly a hard
and tedious task. This often leads to tracking artifacts. For
instance, if selecting buttons or sliders on the PIP a selec-

∗terbu@icg.tu-graz.ac.at

tion event may be triggered, although the PEN is next to
the widget.

The Virtual Cockpit approach does not rely on a well-
calibrated system, but provides a 3D user interface without
using the PIP. This idea is based upon three important is-
sues. First, it provides a smart hierarchical menu structure,
which allows a fast selection of hierarchical grouped inter-
action buttons. Second, our auto enlargeable and therefore
easy selectable 3D widgets provide a very flexible way of
application control and navigation. In addition, our Vir-
tual Cockpit leads to an enhanced reduction of physical ex-
haustion in long-term sessions by not using the PIP. Third,
by being head-fixed and hideable, the user has never an
unnecessarily obstructed view to the scene.

The crucial factor for starting our project was the lack
of very mobile solutions aside from approaches using fly-
ing menus [8] or 3D-Desktop-Managers [14]. The Virtual
Cockpit provides an alternative which is able to force effi-
cient and easy work in AR, particularly when used in con-
junction with smaller panels. We chose the name Virtual
Cockpit, because the control center is always available in
front of the user and provides a true 3D user interface.

The rest of this paper is organized as follows. At first we
discuss related work in this field, which influenced our de-
sign. In the second part we present the idea and design of
the Virtual Cockpit and describe typical use cases. Subse-
quent to that, we show the integration into the “Studier-
stube” library and finally we give an outlook to future
work.

2 Related Work

In 1999 Serra et al. developed an interface for precise work
with volumetric datasets [7]. Their focus lied on reducing
physical exhaustion by using a static real panel. The track-
ing artifacts by an inaccurate calibration were reduced us-
ing this panel approach. In addition they used a scrollable
virtual panel, with free definable and direct selectable ar-
eas of interest. Hence they offered theoretically unlim-
ited extensibility, whereas the used solution was limited
in terms of efficient navigation and a good overview due
to either rapid changes of the current layout or the need
for extensive scrolling. Moreover they used 2.5D widgets,



which are not always easy to select even without tracking
artifacts. Positive influence to our work had the fact that
their panel was only visible when the pen was close. As a
result it never unnecessarily obstructed the users view.

Deering worked on a mixture between 2D and 3D wid-
gets organized in a disk layout [6]. The disk was aligned
in parallel to the view plane, and was used in conjunction
with a 3-button, 6-degrees of freedom (DOF) wand held
in the hand. When invoked, the menu popped up relative
to the current position of the tip of the wand. Similarly,
Sowizral [16] and Wloka et al. [19] used pop-up menus
that showed up in the same location relative to a 6-DOF
mouse. In addition they used the mouse buttons to cycle
through menu entries.

Many approaches tried to transport the desktop-
metaphor to 3D by using 2.5D widgets. Although it gives a
user the confident feeling known from the desktop, it oth-
erwise also increases the mentioned selection problems as
the result of using small widgets when dealing with com-
plex user interfaces.

Jacoby et al. designed a hierarchical menu structure
with pop-up and pull-down menus and employed a cou-
ple of different hand gestures for selecting the menu items
[10]. Another approach for menu selection was done by
Ferneau et al. [9]. They used a 3D widget as a virtual in-
strument provided with menu items and had a 3D mouse as
their primary interaction device, where the buttons of this
3D mouse were connected to the items of the virtual in-
strument. The drawback is that the abilities of the physical
device had to match those of the virtual. Feiner et al. used
2D windows for a 3D AR environment [8]. They displayed
a transparent window relative to the user’s head. Their sys-
tem distinguished between three kinds of windows. First,
display-fixed windows displayed at fixed positions relative
to the user’s head. Second, they discuss about surround-
fixed windows displayed at a fixed position in the world
coordinate system. Third, they used world-fixed windows,
constrained to locations or objects. The main disadvantage
was that they were still using flat windows, but supported
by a display-fixed approach.

While most virtual menus were usually implemented
as a 2.5D object, Liang et al. developed a 3D modeling
system and introduced the 3D object menu concept [12].
They had a 3D ring menu which used also 3D objects in-
stead of 2.5D ones and was easy to use. A similar ap-
proach was done by Dachselt, who picked up the idea of
Toolspaces [13] and used real 3D widgets, to avoid discon-
tinuities between 2D and 3D [5]. This was an approach to
make navigation in feature-rich applications clearer and
easier due to the use of well defined hotspots (Action-
Spaces) with disk like aligned tool palettes.

A different way of virtual menu based systems, based
on the ”pen and panel” metaphor are presented in [17]
[3]. In this context Szalavari et al. introduced the known
PIP for the “Studierstube” [17]. Although we cannot dis-
miss known benefits of ”pen and panel” approaches like
passive haptic feedback, we have experienced some draw-

backs. On the one hand the mentioned tracking artifacts
are revealed, whereas on the other hand the interaction is
limited to the physical size of the panel. The only alter-
native for complex user interfaces is to use more of the
PIP’s sheets or increase the PIP’s size. A sheet is one par-
ticular representation of a panel with all its widgets and
the PIP allows to switch between them during application.
Both ways would result again in a non concise view and
in terms of size in additional physical strain, which is es-
pecially true for complex user interfaces. In this case we
think it lacks of practicability. Furthermore the PIP is usu-
ally based on 2.5D widgets, suffering from the discussed
selection problems. This was one of the main reasons to
introduce the Virtual Cockpit.

In our approach, we overcome the drawbacks in terms
of selection by using real 3D menus with enlargeable wid-
gets, which are head-fixed aligned on a plane. This allows
easy selecting and eliminates influence of the tracking ar-
tifacts. Due to the enlargeable widgets and the head-fixed
user interface alignment a precise calibration is not neces-
sarily required. Moreover our approach supports a hierar-
chical menu structure for a practicable and fast navigable
representation of large and complex user interfaces.

3 Methods

3.1 Motivation and Design

Our primary user interfaces so far used are the PIP and
PEN of the “Studierstube”. However, the more our ap-
plications evolved over time the more user interface func-
tionality was demanded. This was especially true for our
“Liver Surgery Planning System” [2]. For example taking
and analyzing several snapshots of objects and organizing
them on the user interface. But this was going to hit the
mentioned limits of the currently used PIP. However, our
way should ensure a coexistence between a 3D user inter-
face and the PIP, to combine the best of both.

3.1.1 Introduction to Main Components

The Virtual Cockpit contains of three main components:
MainPanel, SubPanel and Widget. Figure 1 shows the in-
terrelation between these three components. The Main-
Panel should be understood as a top-level container. It
contains SubPanels, which are in turn containers for our
Widgets.

The Widget itself is our primary interaction element.
Panels and bars (e.g taskbar, menubar) should be under-
stood only as frames of reference, therefore their shape
will not be rendered. The user will only see their rendered
3D components, in most cases Widgets. In this way, you
can see parts of the scene between the Widgets and it guar-
antees as much as possible a non obstructed view.

With the concept of using a homogeneous style through-
out all components, we had the idea to help the user associ-
ating user interface parts always with a specific geometric



MAINPANEL

SUBPANEL

WIDGET

WIDGET

SUBPANEL

WIDGET

WIDGET

Figure 1: Shows a block diagram of Virtual Cockpit’s main
components

shape. Particularly when dealing with complex scenes and
lots of different shaped objects this should help for orien-
tation. For our project we picked the sphere as a repre-
sentation of a Widget, because we think it symbolizes the
most confided and tangible shape. Next, we will address
the characteristics of the main components in detail.

3.1.2 MainPanel

As already stated, the MainPanel is the top-level container
for everything. We decided to align it in parallel to the
viewing plane and to have it head-fixed. A well known
approach from the desktop-metaphor is also taken into ac-
count here - the use of a taskbar and menubar (see also
figure 2).

The taskbar is aligned along the left viewing area border
and contains one or more iconized SubPanels. To present
them distinguishable the title of the SubPanel is used. The
taskbar is able to become a scrollable bar, if the amount
of iconized SubPanels requires more space then available.
The taskbar disappears when the MainPanel is minimized.

Additionally the menubar is aligned to the upper bor-
der of the viewing area. It offers known desktop func-
tionality like the system menu, quickstart area, status area
and elements to minimize, maximize and close a panel. If
the MainPanel becomes minimized solely this bar remains
visible.

The quickstart area is used to provide instant access to
selected SubPanels, menus or tools even after minimizing
the MainPanel.

As we are using a hierarchical menu structure it is es-
sential to give the user feedback about the current active
level of the menu. The fact that each SubPanel and Wid-
get can have a title is used to display this position in the
menu’s status area by using a special notation.

Another feature of the menubar is to load new SubPan-
els or their layouts and to save customized layouts. A de-
tailed description of this is given later in section 3.1.6.

SubPanels reside in the remaining space of the Main-
Panel (the whole viewing-area except menubar and

taskbar) and are freely movable, similar to the behavior
of multi-modal applications from desktop.

3.1.3 SubPanel

The primary function of the SubPanel is to group Wid-
gets (see also figure 3). Complex menus are split in small,
logically related partitions. One SubPanel can therefore
correlate with one of these partitions. For our example ap-
plication, this could be one for liver analyzing. It would
contain Widgets used for volume calculations of liver tu-
mors.

Beside Widgets, the SubPanel also contains an iconbar,
which uses widgets to minimize, maximize, close or move
the current SubPanel. If it becomes minimized it disap-
pears to the taskbar, if maximized it will be enlarged and
per default positioned in the center of the viewing area
to guarantee an easy interaction. To support individual
changes to the user interface, SubPanels can be closed or
simply be loaded at runtime (see also section 3.1.6).

3.1.4 Widget

The most elementary part of the Virtual Cockpit is the
Widget element, represented by a specific object. It is ca-
pable of visualizing a billboard at its center and in con-
junction with the menubar title this should give enough
information to show the widget’s function. Furthermore
we distinguish between Widgets representing menus and
Widgets for executing other actions, which we call ac-
tion Widgets. 2D widgets are simply visualized in 3D by
finding mappings for pushbuttons, sliders(dials), toggle-
buttons and radiobuttons.

3.1.5 Hierarchies

Our hierarchical tree structure is based on the fact, that
every Widget is a node in a tree, capable of having any
numbers of children. Whereas every action Widget can
be seen as leaf in this tree. If menus and submenus are
needed, then they correspond to the inner nodes of our
structure (see also figure 4). For example, consider an ob-
ject’s cutting-plane snapshot. The leaf Widget’s billboard
could show a low resolution version and when we click on
it, we can show a high resolution version projected on the
PIP. This should only be seen as a representative example
for many other possible cases.

3.1.6 Customization

During application prototyping a great amount of time was
invested just for the layout of the widgets on the PIP. We
recognized that many approaches neglected the fact that
user interfaces have to be designed and their elements must
be arranged. This is difficult if it has to be done in text
files or even hard coded, because results are not imme-
diately viewable. It may work for smaller, simple user
interfaces but is hard when they become more complex.



status areasaveload

liver
main

ana-
lyze

close
minimize to

taskbar
maximize

 &
center

move

quickstart
widget

taskbar

menubarsubpanel

zoomed view

real view
 

 

snap-
shot

Figure 2: Shows a typical configuration of the MainPanel with taskbar, menubar and a SubPanel

 

Figure 3: Shows a typical SubPanel with its widgets

The “Studierstube” provides customization by using Troll-
tech’s QT-Designer, but have still some problems with it.
To overcome this drawbacks, we offer two choices:

Scripting simple scripting based on OpenInventor (OIV)
style, similar the way the PIP offers, but without the
need to specify coordinates, which is optional.

WYSIWYG arranging SubPanels in a WYSIWYG man-
ner, while using the application

Due to the fact the PIP is integrated in the “Studier-
stube” it is also based on OpenInventor. Therefore wid-
get arrangements of the PIP are described as OpenInventor
nodes and are read from a file during initialization. This
can be done with a simple text file, but the drawback is
you have to specify the coordinates all by hand. Our Vir-
tual Cockpit does basically the same, but aligns Widgets
and SubPanels automatically. When going this way we
had the following idea: Due to the usage of hierarchies, a
SubPanel contains hardly more than six top-level widgets
an average. In addition the SubPanels logically separate
the user interface functions. Therefore its enough to align
SubPanels and widgets in a regular grid. This is sufficient,
because menu structure is given through hierarchies rather
than SubPanels.

Scripting user interfaces with SubPanels is easily done.
Each has attributes for a short title as well as alignment,

liver
main

ana-
lyze

snap-
shots modify

Figure 4: Shows the hierarchical tree structure of an ex-
ample menu widget

given by upper neighbor and left neighbor or explicit with
coordinates. Neighbors are specified by their short title.
A SubPanels Widget is completely automatically aligned
in top-left bottom-right row-wise order. When the appli-
cation starts, a simple algorithm computes the needed real
coordinates, saves them for later use and aligns SubPanels
and Widgets.

Users need a chance to customize it to their own pref-
erences. In this context we offer the opportunity to load
additional pre-scripted SubPanels or even whole layouts.
In addition you can save your currently used SubPanels as
your very personal layout. Only customizing your Wid-
gets and hierarchies is currently not supported.

3.2 Interaction

To get a better understanding of typical interaction tasks in
the Virtual Cockpit, we pick the most common and impor-
tant tasks and discuss them in detail.

3.2.1 Small Widgets ”growing up”

Never obstruct the scene, whenever it is possible. With this
in mind, we had to find a way to make our SubPanels as



status areasaveload

liver
main

ana-
lyze

snap-
shot

 

 

 

 

 

 

 

status areasaveload

liver
main

ana-
lyze

snap-
shot

 

Figure 5: Shows the Virtual Cockpit before (left) and after (right) a SubPanel was selected

small as possible but keep them also very easy navigable.
We found the solution in enlarging them when needed. If a
SubPanel is focused, whether clicked on or just aimed by
the tip of the pen, all other SubPanels become invisible.
Figure 5 shows how only the selected one gets bigger and
centered in the view area. Due to the fact that examining
the scene during menu navigation is not necessary, we im-
prove easy navigation, without taking serious drawbacks.

3.2.2 ”Flying” Through The Menus

A SubPanel in its maximized state shows always Widgets
of only one level of the tree structure. If nothing was done
before, these are the roots of the Widgets (top-level Wid-
gets) by default. If a Widget is selected, it is first checked
if it is a leaf. If this is not the case, the SubPanel shows the
children of this inner node. But in case it is a leaf, the func-
tion of this action Widget is executed. Regardless if it was
a pushbutton, slider or an other Widget, the corresponding
executed function has to be defined in the custom applica-
tion and will be used per callback. Additional description
of the event handling system is available at “Studierstube”
research group at Vienna University of Technology [20].

Every leaf Widget contains in its definition the informa-
tion, what should happen to the SubPanel if a Widget is se-
lected. We defined three states: minimize to taskbar, align
at corner X and by default align at center. The second one
can come in handy, if you want to see an action Widget
and the scene at same time, like when using transparency
sliders.

Walking in the hierarchies is done easily. To get one
step back you simply click in the SubPanel’s free space
and the parent widget’s level will be active. Taking one
step back from the root level normalizes the SubPanel and
all other SubPanels are visible again. If we want to nor-
malize without going back all steps, we simply click in the
MainPanel’s free space.

3.2.3 Taskbar and Quickstart

If a SubPanel moves to the taskbar because of minimiza-
tion, it is visualized by a sphere, showing the panel’s title
at its center. A selected panel from the taskbar becomes

maximized again but always with the last active widget
level.

The same is true for the quickstart area, their SubPanels
or widgets are visualized similar. To add a new element to
the quickstart area, simply click on an open spot and next
on the desired panel or one of its widgets. A simple drag
and drop to the MainPanels free space is enough to delete
them, when no longer used.

3.3 Implementation Aspects

The Virtual Cockpit is integrated into the “Studierstube”,
hence it is based on the graphic library OpenInventor. For
detailed explanation of the OpenInventor scenegraph, we
refer to this book [18]. The “Studierstube” was developed
with strict object orientation in mind therefore it is quiet
easy to add new components. A lot of helpful high-level
and low-level classes can be used, beginning with track-
ing support up to a very good user interface event system.
Next, we want to give a short overview how the most im-
portant components of the Virtual Cockpit integrate into
the “Studierstube” library.

The implemented modules of the Virtual Cockpit,
SoVCKit, is integrated the same way as the PIP and uses
therefore similar procedures on creation, initialization and
destruction. Hence it also extends the class SoTrackedAr-
tifactKit and uses an attribute to specify the tracked object,
which should be connected to the transform matrix of So-
TrackedArtifactKit. As a result the matrix of our SoVCKit
is automatically adjusted to the position of the tracked ob-
ject, in our case the user’s head. The term ”kit” is OpenIn-
ventor convention and is used for nodes (classes), if they
should be a container for many nodes. You can see some
examples with SoVCKit and SoMainPanelKit in figure 6.

The class SoMainPanelKit extends like the later men-
tioned SoSubPanelKit class SoBaseKit. This is the base
class for containers, SoTrackedArtifactKit also extends
it. The So3DSeperator node is necessary to prevent the
“Studierstube” event system from sending events not ad-
dressed to the MainPanel’s bars, through all subgraphs and
therefore all SubPanels. Otherwise we would suffer from a
huge performance loss. Widget’s are implemented by the
class SoVCWidgetKit. Their hierarchical menu structure is



SoVCKit

SoVCTaskbarKit SoVCMenubarKit
SoSwitch

(SoMainPanelKit)

SoMainPanelKit

SoTransform
SoSwitch

(SoSubPanelKit)

So3DSeperator

Figure 6: Shows the OIV kit catalog structure for nodes
(classes) SoVCKit and SoMainPanelKit

SoVCWidgetKit

So3DSeperator

SoSwitch
(SoVCWidgetKit)

SoSubPanelKit

So3DSeperator

SoTransform SoVCIconbarKit
SoSwitch

(SoVCWidgetKit)

Figure 7: Shows the OIV kit catalog structure for nodes
(classes) SoSubPanelKit and SoVCWidgetKit

realized by using a SoSwitch. You can see the details of
SoSubPanelKit and SoVCWidgetKit in figure 7.

We are using the existing 3D event system of “Studier-
stube”. Nodes (classes) that should be aware of events
simply have to extend SoBehaviorKit. This way our
SoVCWidgetKit also extends this class and represents our
new base class for action Widgets like pushbuttons, toggle-
buttons, radiobuttons and sliders (dials). In addition, each
Widget has several geometry states and the current ren-
dered is always determined by combination of the states
focused and selected.

4 Conclusions

We have presented a design of an alternative approach to
current AR user interfaces. It features a hierarchical menu
structure, which provides flexible and fast navigation in
even complex user interfaces. Furthermore we showed
how this can lead to a vast decrease of time in realizing
interface layouts, by using our semi-automatic alignment

methods. Our project has reached end of its design phase
and implementation is currently under way.

5 Future Work

For future work we will first concentrate on an evaluation
of the implemented Virtual Cockpit. After that we will
focus on the development of a new interaction device, to
support the style of navigation possible with our system.
A scroll pen will be used, most likely with a pressure sen-
sitive wheel, similar to a common desktop mouse and two
additional buttons. This will allow us navigation through
menus by simple scroll’n click, without the need to move
the hand a lot.

6 Acknowledgements

This project was done as part of the Seminar/Project at the
Institute for Computer Graphics and Vision, Graz Univer-
sity of Technology. I would like to thank Bernhard Re-
itinger for all his help and encouragements.

References

[1] R. Azuma. A survey of augmented reality. In
Computer Graphics (SIGGRAPH ’95 Proceedings,
Course Notes #9: Developing Advanced Virtual Re-
ality Application), pages 1–38, 1995.

[2] A. Bornik, R. Beichel, B. Reitinger, G. Gotschuli,
E. Sorantin, F. Leberl, and M. Sonka. Computer
aided liver surgery planning: An augmented reality
approach. In R.L. Galloway, editor, Medical Imag-
ing 2003, Proceedings of SPIE, volume 5029. SPIE
Press, May 2003.

[3] D. Bowman, L. Hodges, and J. Bolter. The virtual
venue: User-computer interaction in information-
rich virtual environments. PRESENCE, 7(5):478–
493, 1998.

[4] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and
C. Beshers. Enveloping users and computers in a
collaborative 3d augmented reality. In 2nd IEEE and
ACM International Workshop on Augmented Reality,
1999.

[5] R. Dachselt. Action spaces - a metaphorical concept
to support navigation and interaction in 3d interfaces.
In Workshop Usability Centred Design and Evalua-
tion of Virtual 3D Environments, 2000.

[6] M. Deering. The holosketch VR sketching system.
Comm. of the ACM, 39(5):55–61, 1996.



[7] L. Serra et al. Medicine Meets Virtual Reality, chap-
ter An interface for precise and comfortable 3D work
with volumetric medical datasets, pages 329–334.
IOS Press, 1999.

[8] S. Feiner, B. MacIntyre, M. Haupt, and E. Solomon.
Windows on the world: 2d windows for 3d aug-
mented reality. In ACM Symposium on User Inter-
face Software and Technology, pages 145–155, 1993.

[9] M. Ferneau and J. Humphries. A gloveless interface
for interaction in scientific visualization virtual en-
vironments. In Proceedings of SPIE, Stereoscopic
Displays and Virtual Reality Systems, volume 2409,
pages 268–274, 1995.

[10] R. Jacoby and S. Ellis. Using virtual menus in a
virtual environment. In Proceedings of SPIE, Vi-
sual Data Interpretation, volume 1668, pages 39–48,
1992.

[11] H. Kato and M. Billinghurst. Marker tracking and
HMD calibration for a video-based augmented re-
ality conferencing system. In Proceedings Interna-
tional Workshop on Augmented Reality (IWAR’99),
pages 85–94, 1999.

[12] J. Liang and M. Green. JDCAD: A highly interac-
tive 3d modeling system. Computer and Graphics,
18(4):499–506, 1994.

[13] J. Pierce, M. Conway, M. van Dantzich, and
G. Robertson. Toolspaces and glances: storing, ac-
cessing, and retrieving objects in 3d desktop appli-
cations. In Proceedings of the 1999 Symposium on
Interactive 3D Graphics, pages 163–168, 1999.

[14] G. Robertson, M. van Dantzich, D. Robbins, M. Cz-
erwinski, K. Hinckley, K. Risden, D. Thiel, and
V. Gorokhovsky. The task gallery: a 3d window man-
ager. In Proc. of the CHI 2000 conference on Human
factors in computing systems, pages 494–501, 2000.

[15] D. Schmalstieg, A.L. Fuhrmann, Z. Szalavari, and
M. Gervautz. Studierstube - an environment for col-
laboration in augmented reality. In Proceedings of
Collaborative Virtual Environments, pages 19–20,
1996.

[16] H. Sowizral. Interacting with Virtual Environments
Using Augmented Virtual Tools, chapter Stereo-
scopic Displays and Virtual Reality Systems, pages
28–34. Fisher, 1994.

[17] Z. Szalavari and M. Gervautz. The personal inter-
action panel - a two-handed interface for augmented
reality. Computer Graphics Forum, 16(3):335–346,
1997.

[18] J. Wernecke and I. Mentor. Programming Object-
Oriented 3D Graphics with OpenInventor. Addison-
Wesley, 1994.

[19] M. Wloka and E. Greenfield. The virtual tricorder:
A uniform interface for virtual reality. In ACM Sym-
posium on User Interface Software and Technology,
pages 39–40, 1995.

[20] A. Zajic. Application management for three-
dimensional user interfaces. Master’s thesis, Inter-
active Media Systems Group, Vienna University of
Technology, 2003.


