

Graphics acceleration techniques
for a mobile robot simulator

Tamas Juhasz

jt123@hszk.bme.hu

Department of Control Engineering and Information Technology,
Technical University of Budapest

Abstract

Today there is a wide variety of mobile robot
simulators on the market. All have a common
feature: some information coming from the virtual
environment is placed at the user’s disposal. The
simulators are claimed to realize a range-finder (a
sonar or a laser~) and / or a vision system (for
example a CCD camera). Usually an implemented
laser range-finder utilizes the forward ray-tracing
(ray-shooting) mechanism to measure the current
distance. This paper reviews the ray-shooting and

collision detection acceleration algorithms to be
applied in a mobile robot simulator.

Keywords:

robot simulator, range-finder, ray-tracing, space
partitioning, collision detecting

1 Introduction

The GLBot® mobile robot simulator is under
development at our department. The GLBot name is
an acronym of OpenGL and robot. It supports
research on landmark-based navigation algorithms.
The user can control the robot’s behavior in the
widely-spread C language. The implemented
simulator runs under Windows operating systems
(Windows 98 or later) with OpenGL extension
enabled. The platform of implementation is the
standard Windows Application Interface (Windows
API) and the Microsoft Visual C++ 6.0 Integrated
Development Environment. The Java language
could have been another option, but current Java
Virtual Machines are not fast enough to run a 3D
application on an average IBM PC.

The most of today’s common graphics
accelerator cards support the required rasterisation
feature of the OpenGL standard through the bundled
device drivers. The other wide-spread graphics API
is Direct3D and DirectDraw; both are members of
the DirectX family where 9.0 is the newest version.
Although it is much more complicated than the
OpenGL API, it is developing faster. The newer
graphics cards support hardware transformation and
lighting (HWTL, by means of so called Graphics
Processing Units) which is enclosed by DirectX 7.0
or greater. Only the OpenGL 2.0 standard includes
the usage of HW T&L, but except for a few cards
OpenGL 2.0 is not supported, yet. The simulator
itself supports currently only the OpenGL 1.1
standard. In the future there will be a Direct3D
option, too. The third (unacceptable) option is
software rendering (embedded in the operating
system) which degrades the performance and
sometimes gives images of poorer quality.

The imaginary robot is equipped with a range-
finder. Its functionality – the distance measurement
– is carried out by adopting the forward ray-tracing
method. This quantifies the “length” of the emitted
laser beam from the emitter to the first intersection
point. Besides distance measuring the ray-tracing
method can be used to select objects with the mouse
in the virtual scene editor in which the obstacles are
constructed. In an orthogonal viewport the ray starts
from the distance and traverses through the pixel
which is under the mouse cursor (parallel to the
view plane’s normal). The case of a perspective
view is similar to the previously mentioned one, but
the current ray is started in the eye position. The
first object that is hit by the ray will be selected.
This selection method is not time-critical.

Contrarily, each time the robot’s position or
orientation changes, the current measured distance
needs to be recalculated by using the ray-shooting
algorithm. Implicitly the individual object-ray
intersection tests can hardly be made faster. But the
number of those objects which are relevant to the
current ray can be decreased radically with some
spatial data structures. When hundreds or thousands
of objects are in the scene, good data structures can
result 10x-100x speed-up in ray-scene intersection
tests. Widely-spread data structures are hierarchical
bounding boxes, grids, octrees, kd-trees and BSP
trees. The efficiency depends on how many objects
are affected before the firstly intersected is found,
and how many steps in the spatial data structure are
needed to achieve this. [AK89]

2 Spatial data structures

2.1 Hierarchical bounding

volumes

When the virtual scene contains complex objects (in
case of a robot simulator these objects could be the
obstacles), the ray intersection tests can be
accelerated by using this algorithm [Got96]:

- wrap the complex object with a simpler one
that contains it entirely

- if the ray does not hit the simpler object, it is
sure-fire that the complex one is left
untouched, too

- at high-level, bounding volumes can be
organized to new bounding objects, forming
a hierarchy

- if the ray avoids a higher-level bounding
object, all of the contained bounding volumes
and scene-objects can be cast away

 axis-alignment proper fit

Figure 1 – Types of bounding boxes

Most common bounding objects are spheres or
boxes. Axis-aligned bounding boxes can poorly
approximate the set they are bounding, leaving large

“empty corners”. Even if they are the easiest to
construct, oriented bounding boxes sometimes pay
for the overhead (see Figure 1) by giving a snug fit.

Hierarchical bounding volumes give best
results in hierarchical scenes where the bounding
objects follow the hierarchy of the scene objects.

2.2 Equidistant grids

Figure 2 – An equidistant grid

In this case, the 3D space contains cells of equal
shape and size in a regular arrangement. Each cell
contains a list of pointers referencing those objects
that are intersecting it. Calculation method:

1. the starting point of the ray identifies a
cell � current cell

2. search for intersection in the current cell
3. if no intersection found, locate the next

cell by using some kind of 3D line-
drawing algorithm, than go back to 2nd
step

4. if there is an intersection, return the
closest value

5. if the ray passes a cell and hits an object,
it does not always mean, that the first
intersection point is located in that cell !

The grid method is effective only in homogenous
scenes (when objects are scattered in a balanced
way) [Gla84] If case of a non-homogenous
environment, where the objects are lying about in
the scene, stepping through the empty cells can be
time consuming. The accurate number of
subdivisions usually needs some a-priori
information about the scene. If fewer cells are used,
then there are many objects per cell, which degrades
the overall performance. Too many (mostly empty)
cells lead to the same phenomenon which is
discussed previously at non-homogenous scenes.

2.3 Octrees

Figure 3 – Top view of an octree (it is called as
quadtree) with adaptive segmenting

This method is similar to the previous one: in this
case the space is also divided into cells. [Nay93] A
cell is divided into 8 equal sub-cells with 3
perpendicular cutting planes, each are bisecting the
ancestor cell. The planes are axis-aligned (see top
view on Figure 3). Each cell has a list of the
contained objects. The cell subdivisions last until a
given lowest number of enclosed objects is reached
or the depth of the node- tree exceeds a limit. This
method adapts very well to non-homogenous
scenes. The ray traversal is more complicated,
because the resultant cells have different extents:

- if the cell is a non-empty leaf in the node-tree,
then return the closest intersection point in that
cell

- otherwise, if the ray strikes into a cell that has
children, then apply recursion on the 8 sub-cells
in a specific order

- if there isn’t any intersection in any sub-cells,
then find the next cell with the following
method. Calculate the position of the exit point.
Add an infinitesimal value to the ray parameter
which is valid at that point. Traverse the tree
structure with the new point starting at the root
node to find the cell that contains it. (The whole
procedure can be very time consuming if the
adjacent cells are at different level.)

- go back to the first step

2.4 KD trees

The kd trees (in k dimension, where k is usually 3)
have similar rules as the octrees [AK89]. They offer
a relatively efficient way of point location queries.
Let’s consider n objects in k dimension. The k
dimensional space is divided into cells with axis-
aligned cutting planes which mean not necessary
bisecting, but they can split at any point. In case of
octrees, always 3 perpendicular planes (parallel to
xy, xz or yz planes) are used per cell. In kd trees there
is only one cut per node (with a lower dimensional
hyperplane). Each node in the tree is defined by the
plane that partitions the set of objects (through one
of the dimensions) into left/right sets, halving the
object-set of the parent node. These children are
partitioned again into equal halves, using planes
through a different axis.

Figure 4 – Subdivided 2D scene with the
corresponding 2d tree

Partitioning stops after log(n) levels, with only one
object per a leaf cell. Alternate kd-tree construction
algorithms insert objects incrementally and divide
the appropriate cell. Such trees can become
seriously unbalanced, which degrades traversal
performance. A balanced 2d tree can be seen on
Figure 4.
 The structure of a node is the following:

- children pointers
- (parent pointer) � good for the tree-

traversal
- extents of the cell: (xmin, ymin, zmin, xmax,

ymax, zmax)
- list of pointers referencing the contained

objects
- (neighbour pointers) � typically used in

leaf-nodes, eases finding the next cell
for the current ray

The Kd trees complexity of O(n log(n)) in average
which is better than that of the BSP trees’ O(n2).

2.5 BSP trees

[SS92] The Binary Space Partition trees are
generalizations of the kd trees, but the splitting
planes are general (k-1) dimensional hyperplanes,
no axis-alignment is required. They could be
defined as a sequence of splits that divide the space
into non-overlapping parts. Kd trees can be
considered as axis-aligned BSP trees. This model
was first used by Naylor and Fuchs for the Painter’s
algorithm in 1980 (at that time there was not any Z-
buffer hardware that could resolve the problem of
overlapped polygons at rendering time). The
Painter’s algorithm utilizes the fact that farther
polygons can not hide those that are closer.
 A two dimensional plane can be described with
the following equation:

 Ax+By+Cz+D = 0

Where [A,B,C] is the normal vector of the plane.
Let’s consider a P point in the 3D space. By
substituting its three known coordinates into x, y and
z, we can make sure the point is on the plane, if and
only if the previous formula gives zero value. If it
gives a positive number as a result, then the point is
on the front side of the plane, otherwise it is on the
back side. The 3D BSP tree is built up from nodes.
Each node is representing a 2D plane with its 4
parameters. The algorithm for building a BSP tree is
the following [Chin95]:

- if there are more than one objects /
polygons in the space, select a plane for
partitioning

- cut the current set of objects with that
plane into two parts

- recurse with each of the result sets

The way of choosing a cutting plane is dependent on
how the tree will be used, and what sort of
efficiency criteria is used. It is desirable to have a
balanced tree, where each leaf-node is at the same
level and they contain approximately equal number
of objects. However, it takes much time to achieve
this, it is worth in case of static scenes. Namely at
this moment, the tree has to be constructed only
once, and can be stored in the scene descriptor file.

The efficiency of a BSP tree

Space complexity

[SHBS02] For the problem of ray-polygon
intersection testing, consider a set of n parallel
polygons, and the set of m partitioning planes, all of
which are perpendicular to the polygons. This has
the effect of splitting every polygon with every
partition. The number of polygons resulting from
this partitioning scheme is n + (n * m). If the
partitioning planes are selected from the candidate
polygon set (an auto-partition), then m = n, and the
expression reduces to n2 + n. Thus the worst case
spatial complexity of a BSP tree constructed using
an auto-partition is O(n2). It will be extremely
difficult to construct a case which satisfies this
formula. The "expected" case, repeatedly expressed
by Naylor, is O(n).

Time complexity

The time complexity of ray-shooting using an
auto-partition BSP tree is the same as the spatial
complexity, that is a worst case of O(n2), and an
"expected" case of O(n).

3 Individual ray-object
intersection tests

After reducing the number of those objects that are
relevant to the current cell / subspace, the
intersection point has to be calculated by using
some mathematics. The closest intersection point
serves the measured distance for a robot simulator.
Without demanding completeness, the following
types of objects are discussed in this paper: a box, a
sphere, a cylinder and a triangle-mesh, respectively.
The former three are the most common types of
bounding volumes. If an object is transformed with
a homogenous A transformation matrix, then the
inverse matrix is A-1. The ray has to be transformed
with A-1, and continue the calculations in the local
coordinate system of the object.

3.1 Boxes

First we have to decide whether the ray hits the
bounding object at all. If we are sure of the negative
case, there is no need to calculate any intersection
points with the contained object. Although the ray is
a half-line in 3D space, we can approximate it with
an extremely long 3D line-segment.
 The 2D Cohen-Sutherland line clipping
algorithm [SzKL99] can be extended to the third
dimension. The basic concept is to classify each 2D
point with a 4 bit length integer bit-code. The 2D
cutting region is bounded with 4 (2-2 parallel) lines
(Figure 5).

Figure 5 – The 2D Cohen-Sutherland clipping bit-

codes

Each bit represents the point’s location

according to each cutting lines. For example: if the
first bit is zero, then the point is below the upper
cutting line, the second one stands for the bottom
line, etc. Both ends of a line section are classified as
C1 and C2. There are two basic cases for rejection /
acceptance:

- if C1 & C2 != 0, then both endpoints are
on the same external side of a clipping
line, so it must be rejected

- if C1 | C2 == 0, then the whole line-
segment is internal, so there aren’t any
intersections (this case can not happen,
because our ray’s line segment is
infinite)

Otherwise the need for calculating intersection
cannot be cancelled. The 3D generalization is the
following: the bit-code is 6 bits long, representing
upper, lower, left, right, front and back cutting
planes. The classification of each endpoint is the
same as described previously: it requires only 6
comparisons per vertex. The same “C1 & C2 != 0 “
rejecting condition is valid in this case, too.

If the ray-object hit is bound to happen (neither
holds of the trivial acceptance / rejection cases),
there’s no way to avoid calculating intersections. In
local coordinate system, a box is bounded by 3 pairs
of axis-aligned planes.

Figure 6 – Intersecting the top and bottom plane of
a box

We should calculate tin and tout values for each 3 pair
of planes. Then these parameters have to be sorted
in an increasing order. If all tin values are ahead of
the tout values in the list, then there is an intersection
at the least tin value.

3.2 Spheres

A sphere has the following equation in local
coordinate system:

(1)

A ray has the following formula:

(2)

where “s” is the (inverse transformed) start-point,
“d” is the unit direction vector and t is the
parameter. The (2) vector equation can be
transformed to three scalar equations as follows:

(3)

Substitute rx, ry and rz from (3) with x, y and z
respectively into (1), and reorder it to zero. This
results a quadratic vector equation in t parameter:

(4)

If the determinant of the equation is negative, then
the ray does not hit the sphere. If it is zero, then the
ray touches it tangentially. Otherwise there are two
crossing points with two positive t values. The
smaller one is the distance from the ray’s emitter
point.

3.3 Cylinders

An infinite cylinder-side has the following equation:

222 Ryx =+ (2)

 (“R” is the radius of the cylinder)

By substituting the x,y,z variables with the r
vector’s coefficients from (1) formula, we can
rearrange (2) to get a quadratic equation with
parameter t.

If the quadratic equation has no solutions
(negative determinant), that means the ray does not
hit the side of the cylinder. If there is one solution
(the determinant is zero) that means the ray hits the
surface tangentially. Otherwise there are two
intersection points at t1 and t2 parameter values.

We have to find intersection points with the
upper and lower base planes of the object. These
give us the t3 and t4 parameter values. Next we have
to make sure these points are really internal points
of the base disks.

Finally we have got t1…4 values (some of them
may be missing if there were not any solution of
that proper equation). We have to choose the least
positive value, substitute it into (1), so we get the
first intersection point, too.

Other parametric implicit surfaces can be
handled the same way as cylinders or spheres. The
ray’s equation must be substituted into their given
formula, and reordered to form an equation /similar
to (4)/ with only 1 unknown quantity: the t
parameter. This equation can be solved with
numerical root-finder algorithms.

2222 Rzyx =++

dtstr ⋅+=)(

xxx dtsr ⋅+=

yyy dtsr ⋅+=
zzz dtsr ⋅+=

0)()(2)(22 =−•+•+• Rsstsdtdd

3.4 Meshes

Mesh objects are made from connected triangles. A
given edge between two adjacent vertices is usually
shared by two neighbouring triangle faces. Every
obstacle can be approximated with this type of
objects. Those triangles that are facing their back
side to the ray will be dropped off during ray
tracing. This hidden surface removal [DKW85] can
be accelerated with a BSP tree. A ray hits a
triangle’s plane if its direction vector is not
perpendicular to the plane’s normal. If an
intersection point is found, then it has to be
compared with each sides of the triangle to check if
it is an internal point. If there are more triangles in a
cell, they have to be tested against the ray one-by-
one.

4 Collision testing in the robot
simulator

Mobile robot simulators utilize another important
area of 3D game engines: the collision testing. If a
robot-obstacle collision occurs, it must be detected,
and the user must be informed about that. The main
goal is to avoid interpenetrations and responding to
collision too early. When fast moving objects exist
(in this case only the robot can move fast, because
the environment is static) collision detection must
be evaluated a lot of times per second. [Lin93] Let’s
assume that every obstacle and the robot itself are
represented by closed convex polyhedrons. If they
are colliding, at least one face of one object is
penetrating into a face of the other one. An
extremely simple and slow method is the following:
cycle through each object in the scene and test if
they collide with the robot, i.e. if there is an
obstacle-polygon that intersects any of the robot’s
polygons. Let’s consider a simple scene with 5
objects, each having 100 polygons, and let our
imaginary robot contain 50 polygons. The simplest
algorithm leads to 5*100*50=25,000 polygon-
polygon intersection tests per cycle, which has to be
evaluated at least ten times per second to avoid large
interpenetrations. The final result is 250,000
polygon-polygon tests per second, which cannot be
carried out. We have to appeal to some computer
graphics algorithms to accelerate these procedures.

4.1 Naïve collision testing

Let’s approximate the robot with a vertical cylinder.
In this simple case, the obstacles are represented
with their bounding cylinders or boxes. Thus
cylinder-cylinder and box-cylinder collision
detection methods have to be developed. In case of
overlapping bounding volumes, the contained
objects can be matched to find out whether they are
really colliding or not.

The cylinder-cylinder case

We assume both cylinders are vertical. They are
overlapping, if their centre-to-centre distance is
smaller than the sum of their radiuses (Figure 7).

Figure 7 – Cylinder-cylinder collision

To avoid using square root function, the same

fact is true for the squared distance and sum of
squared radiuses.

The cylinder-box case

We assume the cylinder object is upright, and the
box bounding volume is aligned to the Z axis, too.
First attach the cylinder to the box as a child object.
Rotate the box around the Z axis to be fully axis-
aligned. Translate the box with the centre of its
bottom face to the origin (only needed to ease the
conditional tests). Draw an outline around the box
with a radius of the cylinder, the result can be seen
on Figure 8.

Figure 8 – Box-cylinder collision

The cylinder is overlapping the box, when its

centre point enters the outline shape. This polygon
is constructed from 4 circles with radius R at each
corner and 4 rectangles with a width of R.

4.2 Grid method

A regular 2D grid is attached to the robot, with
spacing equal to its diameter. If the robot is moving,
the grid translates with it, too. The cylindrical robot
can hit only those objects, whose base plane-
projection intersects any of the 9 surrounding grid
cells.

Figure 9 – The active cells around the R robot

The “active” cells are highlighted on Figure 9:
instead of 12, only 2 objects are relevant to the
current robot position (R). At next step the squared
relative distance of the candidate objects’ bounding
cylinders is calculated using the Pythagorean
formula. If this value is greater, than the radius of
the robot’s cylinder squared plus the radius of the
object’s bounding cylinder squared, then the robot
does not hit that candidate object. Spheres can also
be used as bounding objects, but they offer a rough
estimation only: it is frequently encountered that the
bounding spheres are overlapping while the objects
aren’t.

4.3 BSP trees

[Wade97] Let’s consider two non-overlapping
convex polyhedrons. It is a true fact, that one can
always find a dividing plane between them. N
number of tree nodes allow search operations to
complete in log(N) time, and collision detection
with a BSP tree is basically a search. If we are
detecting a collision between two objects A and B,
and if we know that A lies entirely on one side of
some plane P that cuts through B, then we need only
test A against the parts of B that are on the same
side of the plane as A. So if we recurse down the
BSP tree of B, finding whether A’s bounding sphere
intersects each separating plane (a very cheap
operation in itself), we can ignore many polygons of
B that have no chance of colliding with A. For each
polygon of B that passes this filter, we will call a
procedure that compares it with every polygon in A.
After selecting potentially colliding polygons from
B, rather than testing them against all of A, we can
drop them down A’s BSP tree, eliminating collision
tests with much of A. By the time we’re done with
all of that, we should end up performing relatively
few polygon-polygon intersection tests.

5 Application

We considered many acceleration techniques in our
mobile robot simulator, and came to the following
conclusion: the BSP tree’s diversified features are
suiting our project most of all.

The BSP tree is constructed in advance as it
does not change during the simulation because the
scene is static. It accelerates both ray-shooting (with
its backface-culling, hidden surface removal, and
ray-order object-sort features) and collision
detection at the same time without extra
construction and memory usage overhead.

6 Summary

Some important computer graphics algorithms have
been surveyed in this paper. They are useful to
achieve performance improvements for the GLBot®
mobile robot simulator application which is
currently under development by the author. Thanks
to the utilized BSP tree’s versatility, the program
does not need extra memory to separate data
structures handling the collision detection and ray-
shooting acceleration. If only ray-shooting was the

topic of acceleration, the axis-aligned kd-trees would
be better choice instead of BSP trees because they
offer an easier and faster way of ray traversal.

7 References

[AK89] J. Arvo, D. Kirk. “A survey of ray-

tracing acceleration techniques” In
Andrew S. Glassner editor, “An
Introduction to Ray Tracing”,
Academic Press, London, 1989.

[Chin95] N. Chin, “A Walk through BSP

Trees”, Graphics Gems V, AP
Professional, pp 121-138, 1995.

[Dev89] O. Devillers. “The macro-regions: an

efficient space subdivision structure
for ray tracing”. In Eurographics
’89, pp 27-38, 1989

[FKN80] H. Fuchs, Z.M. Kedem, B. Naylor,

“On visible surface generation by a
priori tree structures”, Proceedings of
the 7th annual conference on
Computer graphics and interactive
techniques, pp 124-130, 1980

[Gla84] A. S. Glassner, “Space subdivision or

fast ray tracing”. IEEE Computer
Graphics and Applications, AP,
1984.

[Gla89] A. S. Glassner, “An Introduction to

Ray Tracing”. Academic Press,
London, 1989.

[Got96] S. Gottschalk, M. Lin and D.

Manocha, “OBB-Tree: A Hierarchical
Structure for Rapid Interference
Detection”, Siggraph ’96.

[Lin93] M.C. Lin, “Efficient collision

detection for animation and
robotics”, PhD thesis, Department of
Electrical Engineering and Computer
Sciences, Berkley, CA, 1993

[LM] M.C. Lin, D. Manocha, “Efficient
Contact Determination Between
Geometric Models”

.

http://www.cs.unc.edu/~manocha/coll
ision.html.

[Nay93] B. Naylor, “Constructing good

partitioning trees”, In proceedings of
Graphics Interface ’93, 1993

[O94] J. O’Rourke, “Computational

Geometry in C”, Cambridge
University Press, 1994

[PML] K. Madhav, Ponamgi, Dinesh

Manocha, and Ming C. Lin,
“Incremental algorithms for collision
detection between solid models”,
available at
http://www.cs.unc.edu/~manocha/coll
ision.html

[PY90] M. Peterson, F. Yao, “Efficient Binary
Space Partitions for hidden surface
removal and solid modelling”,
Discrete and Computational
Geometry, 1990

[SS92] K. Sung, P. Shirley, “Ray Tracing

with the BSP Tree”, Graphics Gems
III, 1992.

[SHBS02] L. Szirmay-Kalos, V. Havran, B.

Benedek, L. Szecsi, “On the efficiency
of ray-shooting acceleration
schemes”, Spring Conference of
Computer Graphics, 2002

[SzKL95] L. Szirmay-Kalos, “Theory of Three

Dimensional Computer Graphics”,
(editor), Publishing House of
Academy of Sciences, 1995.

[SzKL99] L. Szirmay-Kalos, “Számítógépes

grafika (Computer Graphics) ”,
ComputerBooks, 1999.

[Wade97] B. Wade, “BSP Tree Frequently

Asked Questions”
http://rtfm.mit.edu/pub/usenet/news.a
nswers/graphics/bsptree-faq

