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Abstract 
 
Today there is a wide variety of mobile robot 
simulators on the market. All have a common 
feature: some information coming from the virtual 
environment is placed at the user’s disposal. The 
simulators are claimed to realize a range-finder (a 
sonar or a laser~) and / or a vision system (for 
example a CCD camera). Usually an implemented 
laser range-finder utilizes the forward ray-tracing 
(ray-shooting) mechanism to measure the current 
distance. This paper reviews the ray-shooting and 

collision detection acceleration algorithms to be 
applied in a mobile robot simulator. 
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1 Introduction 
 
The GLBot® mobile robot simulator is under 
development at our department. The GLBot name is 
an acronym of OpenGL and robot. It supports 
research on landmark-based navigation algorithms. 
The user can control the robot’s behavior in the 
widely-spread C language. The implemented 
simulator runs under Windows operating systems 
(Windows 98 or later) with OpenGL extension 
enabled. The platform of implementation is the 
standard Windows Application Interface (Windows 
API) and the Microsoft Visual C++ 6.0 Integrated 
Development Environment. The Java language 
could have been another option, but current Java 
Virtual Machines are not fast enough to run a 3D 
application on an average IBM PC. 

The most of today’s common graphics 
accelerator cards support the required rasterisation 
feature of the OpenGL standard through the bundled 
device drivers. The other wide-spread graphics API 
is Direct3D and DirectDraw; both are members of 
the DirectX family where 9.0 is the newest version. 
Although it is much more complicated than the 
OpenGL API, it is developing faster. The newer 
graphics cards support hardware transformation and 
lighting (HWTL, by means of so called Graphics 
Processing Units) which is enclosed by DirectX 7.0 
or greater. Only the OpenGL 2.0 standard includes 
the usage of HW T&L, but except for a few cards 
OpenGL 2.0 is not supported, yet. The simulator 
itself supports currently only the OpenGL 1.1 
standard. In the future there will be a Direct3D 
option, too. The third (unacceptable) option is 
software rendering (embedded in the operating 
system) which degrades the performance and 
sometimes gives images of poorer quality. 

The imaginary robot is equipped with a range-
finder. Its functionality – the distance measurement 
– is carried out by adopting the forward ray-tracing 
method. This quantifies the “length” of the emitted 
laser beam from the emitter to the first intersection 
point. Besides distance measuring the ray-tracing 
method can be used to select objects with the mouse 
in the virtual scene editor in which the obstacles are 
constructed. In an orthogonal viewport the ray starts 
from the distance and traverses through the pixel 
which is under the mouse cursor (parallel to the 
view plane’s normal). The case of a perspective 
view is similar to the previously mentioned one, but 
the current ray is started in the eye position. The 
first object that is hit by the ray will be selected. 
This selection method is not time-critical. 

Contrarily, each time the robot’s position or 
orientation changes, the current measured distance 
needs to be recalculated by using the ray-shooting 
algorithm. Implicitly the individual object-ray 
intersection tests can hardly be made faster. But the 
number of those objects which are relevant to the 
current ray can be decreased radically with some 
spatial data structures. When hundreds or thousands 
of objects are in the scene, good data structures can 
result 10x-100x speed-up in ray-scene intersection 
tests. Widely-spread data structures are hierarchical 
bounding boxes, grids, octrees, kd-trees and BSP 
trees. The efficiency depends on how many objects 
are affected before the firstly intersected is found, 
and how many steps in the spatial data structure are 
needed to achieve this. [AK89]  
 
 

2 Spatial data structures 
 
2.1 Hierarchical bounding 

volumes 
 
When the virtual scene contains complex objects (in 
case of a robot simulator these objects could be the 
obstacles), the ray intersection tests can be 
accelerated by using this algorithm [Got96]:  

- wrap the complex object with a simpler one 
that contains it entirely 

- if the ray does not hit the simpler object, it is 
sure-fire that the complex one is left 
untouched, too 

- at high-level, bounding volumes can be 
organized to new bounding objects, forming 
a hierarchy 

- if the ray avoids a higher-level bounding 
object, all of the contained bounding volumes 
and scene-objects can be cast away 
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Figure 1 – Types of bounding boxes 

 
Most common bounding objects are spheres or 
boxes. Axis-aligned bounding boxes can poorly 
approximate the set they are bounding, leaving large 



“empty corners”. Even if they are the easiest to 
construct, oriented bounding boxes sometimes pay 
for the overhead (see Figure 1) by giving a snug fit.  

Hierarchical bounding volumes give best 
results in hierarchical scenes where the bounding 
objects follow the hierarchy of the scene objects.  
 
 

2.2  Equidistant grids 
 

 
 

Figure 2 – An equidistant grid 
 
In this case, the 3D space contains cells of equal 
shape and size in a regular arrangement. Each cell 
contains a list of pointers referencing those objects 
that are intersecting it. Calculation method: 

1. the starting point of the ray identifies a 
cell � current cell 

2. search for intersection in the current cell 
3. if no intersection found, locate the next 

cell by using some kind of 3D line-
drawing algorithm, than go back to 2nd 
step 

4. if there is an intersection, return the 
closest value 

5. if the ray passes a cell and hits an object, 
it does not always mean, that the first 
intersection point is located in that cell ! 

 
The grid method is effective only in homogenous 
scenes (when objects are scattered in a balanced 
way) [Gla84] If case of a non-homogenous 
environment, where the objects are lying about in 
the scene, stepping through the empty cells can be 
time consuming. The accurate number of 
subdivisions usually needs some a-priori 
information about the scene. If fewer cells are used, 
then there are many objects per cell, which degrades 
the overall performance. Too many (mostly empty) 
cells lead to the same phenomenon which is 
discussed previously at non-homogenous scenes. 

2.3  Octrees 
 

 
 

Figure 3 – Top view of an octree (it is called as 
quadtree) with adaptive segmenting 

 
This method is similar to the previous one: in this 
case the space is also divided into cells. [Nay93] A 
cell is divided into 8 equal sub-cells with 3 
perpendicular cutting planes, each are bisecting the 
ancestor cell. The planes are axis-aligned (see top 
view on Figure 3). Each cell has a list of the 
contained objects. The cell subdivisions last until a 
given lowest number of enclosed objects is reached 
or the depth of the node- tree exceeds a limit. This 
method adapts very well to non-homogenous 
scenes. The ray traversal is more complicated, 
because the resultant cells have different extents: 

- if the cell is a non-empty leaf in the node-tree, 
then return the closest intersection point in that 
cell 

- otherwise, if the ray strikes into a cell that has 
children, then apply recursion on the 8 sub-cells 
in a specific order 

- if there isn’t any intersection in any sub-cells, 
then find the next cell with the following 
method. Calculate the position of the exit point. 
Add an infinitesimal value to the ray parameter 
which is valid at that point. Traverse the tree 
structure with the new point starting at the root 
node to find the cell that contains it. (The whole 
procedure can be very time consuming if the 
adjacent cells are at different level.)  

- go back to the first step 
 



2.4  KD trees 
 
The kd trees (in k dimension, where k is usually 3) 
have similar rules as the octrees [AK89]. They offer 
a relatively efficient way of point location queries. 
Let’s consider n objects in k dimension. The k 
dimensional space is divided into cells with axis-
aligned cutting planes which mean not necessary 
bisecting, but they can split at any point. In case of 
octrees, always 3 perpendicular planes (parallel to 
xy, xz or yz planes) are used per cell. In kd trees there 
is only one cut per node (with a lower dimensional 
hyperplane). Each node in the tree is defined by the 
plane that partitions the set of objects (through one 
of the dimensions) into left/right sets, halving the 
object-set of the parent node. These children are 
partitioned again into equal halves, using planes 
through a different axis.  
 

 
 

Figure 4 – Subdivided 2D scene with the 
corresponding 2d tree 

 
Partitioning stops after log(n) levels, with only one 
object per a leaf cell. Alternate kd-tree construction 
algorithms insert objects incrementally and divide 
the appropriate cell. Such trees can become 
seriously unbalanced, which degrades traversal 
performance. A balanced 2d tree can be seen on 
Figure 4. 
 The structure of a node is the following: 

- children pointers 
- (parent pointer) � good for the tree-

traversal 
- extents of the cell: (xmin, ymin, zmin, xmax, 

ymax, zmax) 
- list of pointers referencing the contained 

objects 
- (neighbour pointers) � typically used in 

leaf-nodes, eases finding the next cell 
for the current ray 

 
The Kd trees complexity of O(n log(n)) in average 
which is better than that of the BSP trees’ O(n2). 

2.5  BSP trees 
 
[SS92] The Binary Space Partition trees are 
generalizations of the kd trees, but the splitting 
planes are general (k-1) dimensional hyperplanes, 
no axis-alignment is required. They could be 
defined as a sequence of splits that divide the space 
into non-overlapping parts. Kd trees can be 
considered as axis-aligned BSP trees. This model 
was first used by Naylor and Fuchs for the Painter’s 
algorithm in 1980 (at that time there was not any Z-
buffer hardware that could resolve the problem of 
overlapped polygons at rendering time). The 
Painter’s algorithm utilizes the fact that farther 
polygons can not hide those that are closer. 
 A two dimensional plane can be described with 
the following equation: 
 
 Ax+By+Cz+D = 0 
 
Where [A,B,C] is the normal vector of the plane. 
Let’s consider a P point in the 3D space. By 
substituting its three known coordinates into x, y and 
z, we can make sure the point is on the plane, if and 
only if the previous formula gives zero value. If it 
gives a positive number as a result, then the point is 
on the front side of the plane, otherwise it is on the 
back side. The 3D BSP tree is built up from nodes. 
Each node is representing a 2D plane with its 4 
parameters. The algorithm for building a BSP tree is 
the following [Chin95]: 

- if there are more than one objects / 
polygons in the space, select a plane for 
partitioning 

- cut the current set of objects with that 
plane into two parts 

- recurse with each of the result sets 
 
The way of choosing a cutting plane is dependent on 
how the tree will be used, and what sort of 
efficiency criteria is used. It is desirable to have a 
balanced tree, where each leaf-node is at the same 
level and they contain approximately equal number 
of objects. However, it takes much time to achieve 
this, it is worth in case of static scenes. Namely at 
this moment, the tree has to be constructed only 
once, and can be stored in the scene descriptor file. 



The efficiency of a BSP tree 
 
Space complexity 
 

[SHBS02] For the problem of ray-polygon 
intersection testing, consider a set of n parallel 
polygons, and the set of m partitioning planes, all of 
which are perpendicular to the polygons. This has 
the effect of splitting every polygon with every 
partition. The number of polygons resulting from 
this partitioning scheme is n + (n * m). If the 
partitioning planes are selected from the candidate 
polygon set (an auto-partition), then m = n, and the 
expression reduces to n2 + n. Thus the worst case 
spatial complexity of a BSP tree constructed using 
an auto-partition is O(n2). It will be extremely 
difficult to construct a case which satisfies this 
formula. The "expected" case, repeatedly expressed 
by Naylor, is O(n).  
 
Time complexity 
 

The time complexity of ray-shooting using an 
auto-partition BSP tree is the same as the spatial 
complexity, that is a worst case of O(n2), and an 
"expected" case of O(n). 
 

 
3 Individual ray-object 
intersection tests 
 
After reducing the number of those objects that are 
relevant to the current cell / subspace, the 
intersection point has to be calculated by using 
some mathematics. The closest intersection point 
serves the measured distance for a robot simulator. 
Without demanding completeness, the following 
types of objects are discussed in this paper: a box, a 
sphere, a cylinder and a triangle-mesh, respectively. 
The former three are the most common types of 
bounding volumes. If an object is transformed with 
a homogenous A transformation matrix, then the 
inverse matrix is A-1. The ray has to be transformed 
with A-1, and continue the calculations in the local 
coordinate system of the object. 
 
 

3.1  Boxes 
 
First we have to decide whether the ray hits the 
bounding object at all. If we are sure of the negative 
case, there is no need to calculate any intersection 
points with the contained object. Although the ray is 
a half-line in 3D space, we can approximate it with 
an extremely long 3D line-segment. 
 The 2D Cohen-Sutherland line clipping 
algorithm [SzKL99] can be extended to the third 
dimension. The basic concept is to classify each 2D 
point with a 4 bit length integer bit-code. The 2D 
cutting region is bounded with 4 (2-2 parallel) lines 
(Figure 5). 
 

 
Figure 5 – The 2D Cohen-Sutherland clipping bit-

codes 

 
Each bit represents the point’s location 

according to each cutting lines. For example: if the 
first bit is zero, then the point is below the upper 
cutting line, the second one stands for the bottom 
line, etc. Both ends of a line section are classified as 
C1 and C2. There are two basic cases for rejection / 
acceptance: 

- if C1 & C2 != 0, then both endpoints are 
on the same external side of a clipping 
line, so it must be rejected 

- if C1 | C2 == 0, then the whole line-
segment is internal, so there aren’t any 
intersections (this case can not happen, 
because our ray’s line segment is 
infinite) 

 
Otherwise the need for calculating intersection 
cannot be cancelled. The 3D generalization is the 
following: the bit-code is 6 bits long, representing 
upper, lower, left, right, front and back cutting 
planes. The classification of each endpoint is the 
same as described previously: it requires only 6 
comparisons per vertex. The same “C1 & C2 != 0 “ 
rejecting condition is valid in this case, too.  



If the ray-object hit is bound to happen (neither 
holds of the trivial acceptance / rejection cases), 
there’s no way to avoid calculating intersections. In 
local coordinate system, a box is bounded by 3 pairs 
of axis-aligned planes. 
 

 
 

Figure 6 – Intersecting the top and bottom plane of 
a box 

 
We should calculate tin and tout values for each 3 pair 
of planes. Then these parameters have to be sorted 
in an increasing order. If all tin values are ahead of 
the tout values in the list, then there is an intersection 
at the least tin value. 
 
 
3.2  Spheres 
 
A sphere has the following equation in local 
coordinate system: 
 

(1) 
 
A ray has the following formula: 
 

(2) 
 
where “s” is the (inverse transformed) start-point, 
“d” is the unit direction vector and t is the 
parameter. The (2) vector equation can be 
transformed to three scalar equations as follows: 
 
 
 

(3) 
 
 
Substitute rx, ry and rz from (3) with x, y and z 
respectively into (1), and reorder it to zero. This 
results a quadratic vector equation in t parameter: 

 
(4) 

 
If the determinant of the equation is negative, then 
the ray does not hit the sphere. If it is zero, then the 
ray touches it tangentially. Otherwise there are two 
crossing points with two positive t values. The 
smaller one is the distance from the ray’s emitter 
point. 
 
 
3.3  Cylinders 
 
An infinite cylinder-side has the following equation: 

222 Ryx =+    (2) 
 
  (“R” is the radius of the cylinder) 
 

By substituting the x,y,z variables with the r 
vector’s coefficients from (1) formula, we can 
rearrange (2) to get a quadratic equation with 
parameter t. 

If the quadratic equation has no solutions 
(negative determinant), that means the ray does not 
hit the side of the cylinder. If there is one solution 
(the determinant is zero) that means the ray hits the 
surface tangentially. Otherwise there are two 
intersection points at t1 and t2 parameter values. 

We have to find intersection points with the 
upper and lower base planes of the object. These 
give us the t3 and t4 parameter values. Next we have 
to make sure these points are really internal points 
of the base disks. 

Finally we have got t1…4 values (some of them 
may be missing if there were not any solution of 
that proper equation). We have to choose the least 
positive value, substitute it into (1), so we get the 
first intersection point, too. 
 

Other parametric implicit surfaces can be 
handled the same way as cylinders or spheres. The 
ray’s equation must be substituted into their given 
formula, and reordered to form an equation /similar 
to (4)/ with only 1 unknown quantity: the t 
parameter. This equation can be solved with 
numerical root-finder algorithms. 
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3.4  Meshes 
 
Mesh objects are made from connected triangles. A 
given edge between two adjacent vertices is usually 
shared by two neighbouring triangle faces. Every 
obstacle can be approximated with this type of 
objects. Those triangles that are facing their back 
side to the ray will be dropped off during ray 
tracing. This hidden surface removal [DKW85] can 
be accelerated with a BSP tree. A ray hits a 
triangle’s plane if its direction vector is not 
perpendicular to the plane’s normal. If an 
intersection point is found, then it has to be 
compared with each sides of the triangle to check if 
it is an internal point. If there are more triangles in a 
cell, they have to be tested against the ray one-by-
one. 
 
 

4 Collision testing in the robot 
simulator 
 
Mobile robot simulators utilize another important 
area of 3D game engines: the collision testing. If a 
robot-obstacle collision occurs, it must be detected, 
and the user must be informed about that. The main 
goal is to avoid interpenetrations and responding to 
collision too early. When fast moving objects exist 
(in this case only the robot can move fast, because 
the environment is static) collision detection must 
be evaluated a lot of times per second. [Lin93] Let’s 
assume that every obstacle and the robot itself are 
represented by closed convex polyhedrons. If they 
are colliding, at least one face of one object is 
penetrating into a face of the other one. An 
extremely simple and slow method is the following: 
cycle through each object in the scene and test if 
they collide with the robot, i.e. if there is an 
obstacle-polygon that intersects any of the robot’s 
polygons. Let’s consider a simple scene with 5 
objects, each having 100 polygons, and let our 
imaginary robot contain 50 polygons. The simplest 
algorithm leads to 5*100*50=25,000 polygon-
polygon intersection tests per cycle, which has to be 
evaluated at least ten times per second to avoid large 
interpenetrations. The final result is 250,000 
polygon-polygon tests per second, which cannot be 
carried out. We have to appeal to some computer 
graphics algorithms to accelerate these procedures. 
 
 

4.1  Naïve collision testing 
 
Let’s approximate the robot with a vertical cylinder. 
In this simple case, the obstacles are represented 
with their bounding cylinders or boxes. Thus 
cylinder-cylinder and box-cylinder collision 
detection methods have to be developed. In case of 
overlapping bounding volumes, the contained 
objects can be matched to find out whether they are 
really colliding or not. 
 
The cylinder-cylinder case 
 
We assume both cylinders are vertical. They are 
overlapping, if their centre-to-centre distance is 
smaller than the sum of their radiuses (Figure 7).  
 

 
Figure 7 – Cylinder-cylinder collision 

 
To avoid using square root function, the same 

fact is true for the squared distance and sum of 
squared radiuses. 
 
The cylinder-box case 
 
We assume the cylinder object is upright, and the 
box bounding volume is aligned to the Z axis, too. 
First attach the cylinder to the box as a child object. 
Rotate the box around the Z axis to be fully axis-
aligned. Translate the box with the centre of its 
bottom face to the origin (only needed to ease the 
conditional tests). Draw an outline around the box 
with a radius of the cylinder, the result can be seen 
on Figure 8.  



 
Figure 8 – Box-cylinder collision 

 
The cylinder is overlapping the box, when its 

centre point enters the outline shape. This polygon 
is constructed from 4 circles with radius R at each 
corner and 4 rectangles with a width of R. 
 
 
4.2  Grid method 
 
A regular 2D grid is attached to the robot, with 
spacing equal to its diameter. If the robot is moving, 
the grid translates with it, too. The cylindrical robot 
can hit only those objects, whose base plane-
projection intersects any of the 9 surrounding grid 
cells. 
 

 
 

Figure 9 – The active cells around the R robot 
 

The “active” cells are highlighted on Figure 9: 
instead of 12, only 2 objects are relevant to the 
current robot position (R). At next step the squared 
relative distance of the candidate objects’ bounding 
cylinders is calculated using the Pythagorean 
formula. If this value is greater, than the radius of 
the robot’s cylinder squared plus the radius of the 
object’s bounding cylinder squared, then the robot 
does not hit that candidate object. Spheres can also 
be used as bounding objects, but they offer a rough 
estimation only: it is frequently encountered that the 
bounding spheres are overlapping while the objects 
aren’t. 
 

 
4.3  BSP trees 
 
[Wade97] Let’s consider two non-overlapping 
convex polyhedrons. It is a true fact, that one can 
always find a dividing plane between them. N 
number of tree nodes allow search operations to 
complete in log(N) time, and collision detection 
with a BSP tree is basically a search. If we are 
detecting a collision between two objects A and B, 
and if we know that A lies entirely on one side of 
some plane P that cuts through B, then we need only 
test A against the parts of B that are on the same 
side of the plane as A. So if we recurse down the 
BSP tree of B, finding whether A’s bounding sphere 
intersects each separating plane (a very cheap 
operation in itself), we can ignore many polygons of 
B that have no chance of colliding with A. For each 
polygon of B that passes this filter, we will call a 
procedure that compares it with every polygon in A. 
After selecting potentially colliding polygons from 
B, rather than testing them against all of A, we can 
drop them down A’s BSP tree, eliminating collision 
tests with much of A. By the time we’re done with 
all of that, we should end up performing relatively 
few polygon-polygon intersection tests. 
 
 

5  Application 
 
We considered many acceleration techniques in our 
mobile robot simulator, and came to the following 
conclusion: the BSP tree’s diversified features are 
suiting our project most of all. 

The BSP tree is constructed in advance as it 
does not change during the simulation because the 
scene is static. It accelerates both ray-shooting (with 
its backface-culling, hidden surface removal, and 
ray-order object-sort features) and collision 
detection at the same time without extra 
construction and memory usage overhead. 
 

6  Summary 
 
Some important computer graphics algorithms have 
been surveyed in this paper. They are useful to 
achieve performance improvements for the GLBot® 
mobile robot simulator application which is 
currently under development by the author. Thanks 
to the utilized BSP tree’s versatility, the program 
does not need extra memory to separate data 
structures handling the collision detection and ray-
shooting acceleration. If only ray-shooting was the 



topic of acceleration, the axis-aligned kd-trees would 
be better choice instead of BSP trees because they 
offer an easier and faster way of ray traversal. 
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