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Abstract 
Driving simulations are a good example of applications 
that utilize a dynamical model in a simulated 
environment. Such simulations can be decomposed into a 
graphical model responsible for rendering a specific 
space-configuration of entities within a virtual world and 
a dynamical model responsible for determining the 
evolution of this configuration over time. This paper 
wishes to address some important aspects of building 
these two models, with emphasis on their cooperation. 
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1 Introduction 

1.1 On Virtual Reality 
The creation of convincingly realistic virtual worlds is 
without doubt one of the ultimate goals of computer 
graphics. The virtual world in question could be 
considered convincingly realistic if the resolution of its 
presentation were higher than that of the corresponding 
sense of human perception. Even though we are far from 
achieving this goal today, it is nonetheless a valuable and 
challenging experience to take part in maintaining the co-
evolution of hardware and software towards the final 
goal of virtual reality. 

There are two different aspects of creating virtual 
reality from the viewpoint of computer graphics. One of 
them is the realism of each rendered view of the world 
(often called a frame) as a stand-still image and the other 
is the realism of motion represented by a sequence of 
frames. While the field of computer graphics is 
concerned mainly with the former problem, a virtual 
world of interest would preferably be interactive and 
therefore require proper modeling of motions. As 
motions in the real world depend on the laws of 

Newtonian dynamics, it is straightforward to incorporate 
an element – a physical model – that represents an 
applicable partition of the laws of physics into the virtual 
world. Unfortunately dynamical simulation of numerous 
concurrent phenomena cannot be achieved on reasonable 
hardware, thus the main goal of many applications is to 
model only one (or few) aspect of the physical world in 
detail. Such applications, that contain a virtual world, are 
interactive and present a detailed dynamical model of an 
entity in question, are commonly called simulators in 
computer entertainment. This paper addresses some 
issues of creating such applications. 

1.2 Simulating Driving 
There is a growing home industry of writing driving 
simulations today [1]. This fact can be related to two 
factors. Home computers are becoming powerful enough 
to simulate vehicle dynamics in real-time without the 
need of writing bit-by-bit optimized code. Also vehicle 
dynamics is doubtlessly a field of wide interest among 
the laymen of driving, even more so with the 
professionals. 

Apart from sheer entertainment a driving simulation 
is probably the best choice to represent the benefits of 
simulators in general: it is easily adaptable as a teaching 
and/or testing tool that driving students and racing teams 
can use with greatly reduced cost and caution compared 
to the real thing. Provided, of course, that the simulation 
is realistic enough to be of any professional use. This is 
why the professionals of vehicle dynamics also take 
interest in producing specialized models for real-time 
computing. 

2 Aim and Scope of the Simulator 

2.1 Entertainment 
The driving simulation under design described in this 
paper is intended for entertainment purposes on a 
personal computer. This means that the quality of the 



physical model does not aim to meet engineering 
standards; nonetheless it wishes to be as realistic as it can 
be given a certain hardware configuration, through 
iterative refinement. The first goal is to design a coarse 
simulation engine with sufficient flexibility and 
modularity to be refined module-by-module without 
disturbing the underlying structure of the software. 

2.2 Platform Issues 
 Although it is generally not advisable to design software 
for hardware not available at the time of the intended 
completion of the project, programs in the domain of 
computer graphics could be regarded as an exception. 
The evolution of computer graphics is so fast and we are 
so far away from the intended goal of virtual reality that 
any successful new attempt that aims at this goal renders 
all previous ones obviously out-of-date.  

Therefore an amount of foresight is necessary to 
produce a piece of software with any chance of 
longevity. But since the general public surely does not 
have state-of-the art hardware, a well-designed program 
should exhibit massive scalability in order to provide an 
acceptable solution to a fairly wide range of users. 
Portability also poses a design issue; the reusability of 
code is a great advantage if we are to address customers 
using multiple computational platforms.  

Fortunately there is a graphics library designed with 
many of the above-mentioned goals in mind: the 
OpenGL graphics library [2]. It is very advisable to use 
such a library in current attempts of creating a real-time 
graphics application. OpenGL is well designed, flexible, 
efficient and sufficiently platform-independent. 
Unfortunately it has at least one major drawback: any 
new features provided by vendors of graphical 
accelerator hardware are first only available in a vendor-
specific fashion, which counters somewhat the intended 
platform independence.  

The programming language of the author’s choice is 
C++, which is widely accepted as a tool for creating 
modular, portable code with good performance. 

2.3 Decomposition of the Task 
The task of writing a driving simulation can be 
decomposed into two partitions. One of them is to create 
the graphical model of the virtual world; the other is to 
create the physical model of vehicle dynamics. This 
paper is focused mainly on the latter task, but there are 
certain aspects of the former one that we wish to talk 
about. It is important to see that the two components 
have to work in concert to enhance the notion of reality 
in the virtual world. Quite often this is not the case in 
driving simulations, the graphical model represents only 
vaguely the happenings between the car and terrain and 
within the car. Upcoming simulations (such as the 
awaited Colin McRae Rally 3) put increasing emphasis 
on this idea, showing that the time is nearing when 

personal computers reach the power sufficient to cope 
with such issues.  

3 Key Features of the Graphical 
Subsystem 

3.1 Terrain Modeling 
The idea of virtual reality introduces a world where the 
user can freely move in preferably all directions. Because 
we intend the driving simulation to aim towards this idea, 
it is not favorable to choose a world model corresponding 
to the average driving simulator, which contains only the 
track and its close surroundings.  

 

Figure 1. World model of a typical driving 
simulation (Rally Trophy) 

Instead of this we could base the virtual world of the 
simulation on terrain modeling. The most common 
approach to do this is to utilize a regular grid where we 
present height data at the points of the grid. Such a 
height-field can be represented as a grayscale bitmap 
where the whiteness of the pixels corresponds to height.  

Figure 2. The height-map of the 
basic terrain in the simulation 

Such a height-map easily lends itself to be interpreted 
as a quad patch. The main problem is that the amount of 



data present in the whole map quickly becomes far too 
much to render without some form of culling and Level 
Of Detail (LOD) scheme as the size of the map grows to 
represent larger worlds. There are many sophisticated 
approaches to this problem such as SOAR [3]. These 
methods require active participation of the CPU to 
deliver an optimal set of triangles.  

Figure 4. LOD scheme at work in terrain rendering

In an application such as a driving simulation we 
wish to devote the CPU to other tasks such as the 
evaluation of the physical model, so we are searching for 
a method we can use to coarsely partition the terrain data 
into larger blocks and then feed them to the GPU. 
Willem H. de Boer describes such a method [4]. His 
solution uses a quad tree structure to partition the terrain 
data by recursive quartering to some predefined depth. 
Multiple resolution versions are created from the smaller 
terrain blocks achieved by the subdivision. The quad tree 
containing the terrain data also contains the dimensions 
of each referenced terrain partition in its nodes.  3.2 Spline-Based Smoothing 

The described method of rendering the terrain data leaves 
open the question of how to determine the height of the 
terrain at an arbitrary point. Some sort of interpolation is 
clearly required between the heights of the neighboring 
grid points. This is the place where the interaction of the 
graphical and physical models comes into play: the 
vehicle dynamics model requires the height of the 
underlying terrain to be determined at the contact patch 
of each wheel. As real terrain changes height more 
smoothly than a triangulated surface, it is reasonable to 
use some higher order method of interpolation. Also, the 
surface normals are needed in the dynamics model as 
well as in lighting, once again in the arbitrary position of 
the wheel contact patches.  Figure 3. The concept behind generating a quad 

tree An approximation type B-Spline surface [5] using the 
grid points of the original terrain data as control points 
has the required properties, it is smooth, monotonous and 
its surface normals can be obtained analytically. 
Introducing the trick of only evaluating one coordinate 
(height) with respect to the other two (position on a 
plain), the calculations of a given point can be made 
efficient. 

During rendering the tree is parsed, the bounding box 
for each node is compared with the volume of the 
viewing frustum and the node is rejected if there is no 
intersection between the two. At the leaf nodes 
determined to be at least partly visible, one of the 
different LOD versions of the block are chosen for 
display according to a complex distance metric that 
incorporates the roughness of the terrain block. The 
different versions are all ordered grid representations 
with different powers of two resolutions. The possible 
effect of cracking when two blocks of different 
resolutions meet is resolved by decreasing the resolution 
of the higher LOD block at its edge. This problem is 
easily solvable if there is only one LOD change between 
the neighboring blocks. 

Figure 5. Effects of Spline smoothing. Right patch is 
same as left with four times the resolution 

The current solution utilizes the ideas of de Boer, 
with the simplification that the more complex distance 
metric is replaced by simple distance. Each LOD version 
of each block is chosen for display if the distance from 
the center of the block to the camera falls between two 
predefined values. Once we have a smooth terrain representation it is 

straightforward to use it as a basis for higher tessellation 
in rendering. We can preprocess new LOD versions of 
each terrain block to a level allowed by the available 



RAM, and we can produce more detailed tessellation on 
the fly, if required.  

If we wish to incorporate roughness on the centimeter 
level into the model, we can do so by introducing large-
scale detail displacement maps added on top of the 
normal terrain data. These can be visualized using shader 
code for bump mapping or by tessellation in the case of 
extreme close-ups [6].  

Apart from height and color, practically any property 
of the terrain surface with local relevance can be 
represented and interpolated using textures. The program 
currently takes benefit of a general Spline-evaluator class 
in calculating the macro and micro height variation of the 
terrain, the local friction coefficient and the color of the 
dust and kickup produced by the car. 

It is important to state that the resolution of the 
graphical representation of the terrain must be high 
enough to avoid such artifacts as submerging or floating 
wheels. It is also important to see that the ideas 
represented here address only a small portion of the 
issues encountered in designing a virtual world for a 
driving simulation. Most of these issues would easily 
require a separate paper each to discuss properly, such as 
the representation of dense vegetation, water, shadowing, 
atmospheric effects, clouds, dust, particles etc. 

4 Key Features of the Dynamical 
Subsystem 

4.1 Basic Methods 
There are two basic approaches to simulating Newtonian 
dynamics, with different fields of application and 
validity. One of them is the numeric integration of 
equations that change rather smoothly over time and 
space [7] and the other is based on calculating impulse 
forces during sudden and rapid changes in motion of 
bodies [8]. The latter approach is mainly used to resolve 
collisions. Although it is a very important and valuable 

tool in handling such cases, in a driving simulation it is 
applicable only for handling the collisions of the car 
body with the ground and other obstacles, which is 
clearly not the foremost important task in deriving a 
model for vehicle dynamics. Therefore in this paper we 
wish to concentrate only on the integrative methods of 
evaluating a dynamical model.   

It is important to note that the integrative method of 
doing a physical simulation gives only a framework, not 
a physical model in itself. The impulse based collision 
resolution does represent an actual physical model that 
needs only parameterization to work, but its applicability 
is more limited. The impulse-based method is generally 
used together with an integrative model to handle special 
cases. The smooth evaluation of the model is stopped 
once a collision situation is found and the state variables 
are updated instantly. Then the general simulation is 
restarted. 

Figure 6. Actual view of the terrain in the 
simulation 

4.2 Object Representation 
The bodies in the model are considered rigid, at least for 
the major part of the simulation. (Deformation due to 
damage caused by collision is not handled yet, but is 
intended to be in the future.) Rigid body dynamics is a 
well-established field of mechanics, with the advantage 
of relatively low cost of calculations (as compared to 
deformable bodies).  

Rigid bodies are capable of two types of motion: 
linear and angular (rotational), which can be handled 
independently. In accordance with this, bodies have two 
sets of properties, their inertia and inertia tensors. Inertia 
or mass is the property that shows how the body 
responds to forces. Inertia tensors represent the spatial 
distribution of the mass of the body, and show how it 
responds to torques and characterize its rotation when 
“left alone”. Inertia is a scalar value that is constant 
unless the body gains or loses weight, such as if a body 
breaks up into smaller pieces. An inertia tensor, on the 
other hand, is a 3 x 3 matrix that changes with the 
orientation of the object in world space (hence the name 
tensor). The inertia matrix of an object in an arbitrary 
orientation can be computed using the following formula 
[9]: 
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where Ibody is the inertia tensor given in the body 

coordinate system, and R(t) is the rotation matrix 
representing the current orientation. There is a theorem 
stating that there exists an orientation for every rigid 
body where its inertia tensor can be represented by a 
diagonal matrix. It is advisable to use this orientation as 
the basis of the body coordinate system, for it allows us 
to store Ibody as a three-vector and its inverse as the 
element-by-element inverse of Ibody. 

Apart from properties, each physical body in the 
simulation has 4 state variables: 

r(t) – position, 



P(t) – linear momentum, 
R(t) – orientation, 
L(t) – angular momentum;  
And two auxiliary state variables: 
v(t) – velocity, 
ω(t) – angular velocity. 
Each of these variables is a three-vector except for 

R(t), which is represented by either a rotation matrix or a 
quaternion. The auxiliary variables are computed via the 
following equations: 

 

 
written in a fashion to emphasize the analogy. While 

v(t) is constant in the case of an undisturbed object (that 
no external force is exerted upon), that is not true of ω(t). 
The respective moments are both constant under such 
circumstances. The management of R(t) and I(t) is the 
only real challenge in the framework, apart from them 
the rest of the dynamics is pretty straightforward. This 
approach is referred to as six degrees of freedom 
modeling (6DOF for short) because of the three axes and 
three angles of possible motion. 

4.3 The Simulation Cycle 
Given the above framework the real problem in creating 
an adequate simulation is the physical model itself: a set 
of differential equations (ordinary differential equations, 
or ODE-s to be precise) enabling us to evaluate the 
forces and torques governing the motion of objects in the 
given time and space. The equations may depend on any 
obtainable property of the object or the virtual world, but 
are preferred to behave smoothly, i.e. without rapid 
changes for small variations in the input space. Suddenly 
appearing huge forces are almost certain to cause 
problems with most types and stepsizes of numeric 
integration. 

Rephrasing the main idea of the previous paragraph, 
we require the physical model to provide us for each 
object with a (limited) number of forces (Fi) and the 
points of their application to the object (ri). The effective 
forces and torques result from these two simple 
equations: 

 
In practice, the physical model is generally 

partitioned into many smaller modules with their effects 
summed using force and torque accumulators that are 
zeroed at the beginning of each evaluation step. 

So far we have a state representation of the virtual 
world and proper functions to evaluate the forces acting 
on it in a given instant and configuration. (These 

functions – or the following – seldom take the form of a 
differential equation in working code, only on paper at 
design time.) Now we wish to obtain the state of the 
system at some later time. We have the basic equations 
of Newtonian dynamics to guide us: 
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the last equation being valid for the quaternion 
representation of orientation as derived in [9]. 

It follows that to obtain valid state variables for time t 
we have to evaluate the expressions: 
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Unfortunately analytic integration is only possible in 

very simple or special cases. The general approach is to 
use numeric integration: iteratively updating the state 
variables at discrete time steps. Numeric integration 
works by sampling the forces in effect at least once 
during each time step, and using this finite-resolution 
information to calculate the resulting changes. It is to be 
seen that this scheme – no matter how sophisticated an 
integration method one uses – generally results in 
numeric errors of a magnitude characteristic of the 
method, causing numeric drift. There are certain cases 
where we are bound to encounter this problem, as 
mentioned above.  

The most basic mode of numeric integration is 
Euler’s method, which regards the force, torque, velocity 
and angular velocity to be constant during the time step. 
This corresponds to a first-order Taylor-series 
representation of the system, thus it is called a first-order 
method. State variables are updated using the following 
equation: 

.)(

)(

∑
∑

×=Τ

=

ii

i

Frt

FtF

.)()()( ttftfttf ∆+=∆+ &

 
This method is very simple, fast and easy to use. 

Unfortunately it has an error of Ο(∆t2) and does not even 
give correct results in its simplest form for constant 
forces. The greatest problem with it is probably that it 
drifts very rapidly in the case of strong undamped spring 
forces and easily causes undesired explosive effects in 



the physical model. Therefore it is favorable to introduce 
higher order numeric integration to the physical 
framework, at least as an option. 

There are two widely used higher order methods of 
numeric integration, one of them is the second-order 
midpoint method, the other is the so-called fourth order 
Runge-Kutta method (RK4) [7]. These have errors of the 
order Ο(∆t3) and Ο(∆t5), and require the underlying 
physical model to be evaluated 2 and 4 times 
respectively. While RK4 is the virtual industry standard 
for doing dynamical modeling, in the case of a computer 
game the required precision is not as high as in 
engineering applications. The main issue is preventing 
explosive physics, and the midpoint method does an 
excellent job of that: it is analytically correct for a range 
of forces and greatly enhances the stability of modeled 
spring forces. 

 
The midpoint method - as derived in [7] - works by 

calculating the Euler step, then using the evaluation of 
the model again at the midpoint of the Euler step to 
update the state variables. In a more mathematical 
fashion, this procedure can be written as: 

The current version of the program supports all three 
types of integration with emphasis on the midpoint 
method. Although the physical model does run 
noticeably smoother using methods of higher order 
integration, the difference is almost negligible. This fact 
proves that some unrealistic effects produced by the 
simulator are due solely to the vehicle dynamics model, 
not the instability of numeric integration. 

4.4 Constraints 
So far we have said nothing about the derivation of the 
underlying physical model used to determine the forces 
at work in the simulation. Though not much can be said 
in general, there are certain approaches, which add a 

higher level to the methods described above. Constraint-
based modeling is an evolving field concerned with 
forces resulting from geometric constraints in the model 
[10]. Such an approach is very useful in the case of 
vehicle dynamics for deriving forces in the suspension 
system of the car. The actual simulation does not make 
use of this method so far, but we wish to incorporate it in 
the future. 

5 The Model of the Car 

5.1 General Properties 
The main duty remains of providing the actual model 
representing the car in the simulation. As stated before, 
the vehicle model in a game is not required to be as 
sophisticated as the one in an engineering application. 
Therefore we wish to outline a basic model, which is 
sufficient for running an entertaining simulation, but can 
be enhanced if desired.  
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Figure 7. Simulation of the same undamped spring 
using midpoint (solid) and Euler (dashed) methods

The car is represented in the simulation by 5 rigid 
bodies, the car chassis and the four wheels. Besides 
these, logical objects exist in the simulation that only 
provide forces and torques while having no mass or 
shape of their own. 

Figure 8. Separate rigid bodies in the model: car 
body and wheels 
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The car model has 6 DOF for the chassis, 3 for each 
front and 2 for each rear wheel, and one DOF for the 
rotation of the engine, giving a total of 17 DOF. The 
wheel movement is limited to vertical motion in the body 
frame of the car, rotation about its spindle axis and 
steering rotation in the case of the front wheels (or all of 
the wheels in case of four-wheel steering). The logical 
components of the model include the engine, clutch, 
gearbox, differentials and suspension. The brakes are 
also a logical component, but they are handled within the 
wheel model, by adding in a single torque value for each 
wheel.  



The car body itself has no real model currently except 
for providing penalty forces in the case of collisions 
between its bounding box and the terrain, which, 
although acceptable in results, is clearly not the state-of-
the-art solution for collision resolution. Also air drag is 
accounted for in the model of the car body in a very 
simplistic manner. Air drag varies with the square of the 
velocity and does not depend on the orientation of the car 
(which is not true in real physics). Forces due to air drag 
(and gravity) are modeled to act at the center of gravity 
(COG) of the car, thus exert no torque on the body 
chassis.  

The most important – and thus most complex – 
component in the dynamical model is the tire model, for 
it is clear that it ultimately determines the handling of the 
car and thus the realism of the simulation. The 
suspension model could be considered to be the second 
most important for similar reasons. Suspension parts 
actually move with respect to the car frame and thus have 
characteristic physical properties in a real car, but for our 
current purposes it is reasonable to regard them as logical 
components and lump some of their real physical 
properties to the wheels (also the inertial properties of the 
drivetrain) [8]. In the following sections we wish to give 
an outline of the logical components topped by the tire 
model discussed in a bit more detail. 

5.2 Engine 
The main property of the engine is a function of its 
maximum output torque at a certain angular velocity, 
often called a “torque curve”. It is represented by 
multiple linear segments and is normalized to be able to 
use engines of different power with the same 
characteristics. The effective multiplier is given as a 
separate value in the car’s configuration file. 

The engine uses the throttle position as an input 
variable. The available torque is determined linearly 
from the throttle position, which is a crude but sufficient 
estimation. The engine has rotational inertia (which is a 
single scalar in this case) and frictional constants; its 
friction during rotation varies roughly linearly with the 
angular velocity. The output torque is fed to the clutch, 

which feeds back a response torque from the rest of the 
drivetrain. Engine rotation is updated using the 
difference of these two torques. 

5.3 Clutch 
The clutch has the purpose of negotiating differences in 
angular velocity between the engine and the rest of the 
drivetrain. This is important because we start up with a 
running engine and standing wheels, and need to 
smoothly eliminate the difference or else the engine 
would stall.  

There are basically two types of clutch in the real 
world and the model: dry and viscous. Dry clutches work 
based on Coulomb friction, the clutch torque is roughly 
linear with the force applied between the clutch plates in 
case the plates are sliding on each other. When the 
rotation of the plates becomes equal (and the clutch is 
disengaged) the rotation of the engine and the drivetrain 
become linked. This link holds until the clutch is 
engaged or the torque between the plates exceeds a 
predefined level. Clutch control is automatic in the 
simulation; it automatically disengages if the engine 
revolution falls below a certain level.  

As of viscous clutches, a proper model for coding 
them is yet to be found. The current solution derives 
torques using the difference between the angular velocity 
on the two sides of the clutch. 

5.4 Gearbox 
A gearbox has the task of converting angular velocities 
and torques in the drivetrain. It has a set of gears 
characterized by their ratio of conversion. These ratios 
are used for multiplying the torque and dividing the 
angular velocity from the engine to the wheels and vice 
versa from the wheels to the engine, based on the 
theorem that the product of the two must remain constant 
during the conversion. 

Figure 9. Normalized torque curve built from 
linear segments 

There are two methods for changing gears: manual 
and automatic. Automatic gear change is based upon 
efficiency: the gear is switched to the neighboring higher 
or lower one if the absolute torque is higher in that gear 
compared to the current one. The efficiency of the torque 
output is decreased during automatic gear usage (as it is 
in real life) to give manual gears a benefit. The gearbox 
has control of the clutch during these operations.   

5.5 Differential 
The basic idea of a differential is much easier to 
implement in code than it is to build in real life. A 
differential has the duty of ensuring that all the wheels 
receive the same amount of torque while enabling them 
to rotate at different speeds. This is necessary because 
during a turn the wheels of the car cover different 
distances within the same time. In programming this can 
be accomplished by simply dividing the available torque 
at a preset ratio among the driven wheels. The angular 



velocity of the wheels is averaged to find the effective 
rotation of the drivetrain. 

While the basic differential is “open” in the sense that 
it does permit limitless difference between the angular 
velocities of the wheels it affects, this scheme is not 
always useful. In the case of powerful racecars and off-
road vehicles it is desired to limit the “slip” of the 
differential. The solution to this problem up to date is 
similar to that of the viscous clutch, which should be 
enhanced in the future. 

5.6 Suspension 
We have provided a rather simple solution to the 
suspension system of the car. Wheel suspensions are 
treated completely independently; also there is no camber 
variation with the suspension travel. 

As only vertical motion is permitted for the wheel in 
the body frame of the car, the horizontal forces acting on 
the wheel are simply forwarded to the chassis itself. This 
gives acceptable results but completely neglects the real 
geometry of the suspension that is normally taken into 
account by the introduction of roll centers [11]. With the 
current solution roll centers of both the front and rear 
axles are set permanently at ground level, which 
increases the tendency of the car to flip over in some 
situations. This can be countered by using the vertical 
suspension force as the normal force in the tire model 
calculations; in this case two wrongs do make a right.  

The vertical travel of the wheel is governed by two 
nonlinear sets of spring and damping forces, one of them 
reserved for the bump stop (a piece of strong rubber that 
stops the suspension movement at the point of maximum 
suspension travel). Spring forces depend on the vertical 
position of the wheel in the car frame and damping on its 
velocity. These forces are applied to both the car chassis 
and the respective wheel.  

5.7 Tire Model 
As mentioned above, the tire model of a driving 
simulation is the single most important feature of the 
dynamical model. This should be evident because under 
normal circumstances only the tires of the car touch the 
ground and therefore all major forces acting upon the car 
body ultimately originate from the tire. The tire model is 
responsible for traction and cornering forces and thus 
determines the handling characteristics of the car, and 
how the engine torque is translated to acceleration. The 
tire model is simplified to the generation of three 
components: normal, longitudinal and lateral forces. The 
latter two forces are decoupled to the maximum extent 
possible and then combined to meet the limits set by a 
friction ellipse. Aligning moment is currently neglected 
because no means of force-feedback have been 
introduced to the simulation.  

Modeling tires in real time is widely agreed upon by 
professionals to be a difficult problem. Tire models are 
either purely analytical or semi-empirical, representing 

functions to fit experimental data. Both types of models 
can be steady-state or dynamical, with a different range 
of validity concerning the domain of frequencies 
encountered by the tire. For the macro height variation of 
the terrain a steady-state approach is sufficient, and the 
simulation currently utilizes such a model. With the 
recent introduction of the displacement height-maps the 
validity of such a solution decreases but fortunately any 
steady-state model can be extended to a dynamical one 
with the introduction of two new state variables [11]. 
This is to be done in the near future.  

Figure 10. In-game display of wheel forces at work 

Steady-state tire models generally calculate traction 
and cornering forces based upon two properties of a 
wheel in motion: slip ratio and slip angle [11][12]. To 
understand these properties it must be made clear that the 
tire generates forces due to its deformation best 
represented by complex nonlinear spring forces. A tire 
producing traction (or braking) forces has different 
angular velocity as compared to the same tire rolling 
freely at the same traveling speed. This difference is 
characterized best by slip ratio, which is defined by: 

,1
0

−=
ω
ωSR

where ω is the actual angular velocity of the tire and 
ω0 (=vx/Reff, Reff is the effective radius of the wheel) is 
the angular velocity of a free-rolling tire moving with the 
same linear velocity as the driven or braked tire. Slip 
angle (SA) is the angle between the wheel plane and its 
direction of motion. 

The industry standard for tire modeling in real-time 
applications is the so-called Magic Tire Model of 
Pacejka [11][12]. It is a semi-empirical model recognized 
to be exceptionally correct for derivation of tire forces 
under explicit circumstances. Unfortunately its parameter 
set is rather complex and cannot be modified intuitively 
to account for changes in the tire or the type of surface 
the tire rolls upon (since it would require different, hard-
to-obtain experimental data sets for each case). Even 
though we wish to implement the Magic Tire Model in 



the future (because of its applicability on tarmac), we 
were concerned with finding an analytical model due to 
these issues. Finally we chose to implement a tire model 
based upon that of James Lacombe [9]. 

Lacombe’s model is an analytical steady-state model. 
It focuses on clearly distinguishing two regions of the tire 
contact patch, a static (sticking) and sliding region. The 
sliding region is handled based upon a Coulomb-type 
friction model and the static region based upon linear and 
nonlinear spring forces concerning the longitudinal and 
lateral forces respectively (the normal force is also 
generated from a nonlinear spring very much similarly to 
most of the models). The strength of the model lies in its 
approach to the derivation of forces during combined 

longitudinal and lateral acceleration, while the discreet 
cases produce results similar to those of other tire 
models. The ratio of the static and sliding regions varies 
smoothly during the simulation and the sliding region 
produces longitudinal and lateral forces in a coupled 
manner since a Coulomb-type frictional force always acts 
against the direction of sliding motion, in this case the 
motion of the contact patch on the ground. (The direction 
of motion of the contact patch is normally not the same 

as that of the wheel, only if the wheel is completely 
blocked and does not roll at all.) 

While the model at work in the simulation is not the 
most sophisticated one possible and wishes to be 
enhanced in the future, it does respond lively to 
parameter changes and driving style. Important real-
world effects such as turn-in braking and power oversteer 
can be produced with ease in the simulation, along with 
other cases of under- and oversteer. Handling differences 
between front-, rear- and four-wheel driven vehicles are 
very pronounced and probably even exaggerated to some 
extent. On the whole the car behavior is quite realistic 
compared to the simplicity of the model. 

It is important to note that determining the validity 
range of the parameters in the model is in cases almost as 
hard as deriving the model itself and accounts for a major 
part in the realism of the final product. 

Figure 11. Sample plot of pure longitudinal force 
coefficient as function of slip ratio 

Figure 13. A moment of action in the running 
simulation: negotiating a corner in a controlled slide 

Figure 12. Sample plot of longitudinal (x) versus 
lateral (y) forces with increasing SR at constant SA

6 Summary and Future Work 
It is rather challenging to write a driving simulation. In 
this paper we have made an attempt to outline some basic 
ideas in the design of such an application. We have sub-
classed the original task into two fields: graphical and 
physical modeling. We have introduced an adequate 
terrain representation; a general framework for doing 
physically based modeling and the actual physical model 
of the car. These three aspects serve as a basis for 
building a more sophisticated simulation. 

The list of things that can be done to enhance the 
application is virtually endless, limited only by time, 
imagination and computing power. The terrain model 
greatly desires objects and vegetation to add to its visual 
realism, while these objects should also be modeled 
physically to enhance the connection between the 
graphical and physical representations. The impulse- and 
constraint-based methods should be introduced to the 
physical model. Car body deformation due to collision 



should be addressed. The tire model should be enhanced 
and extended to a dynamic one. Real suspension 
geometry should be modeled. And last, but not least 
driver AI should be introduced to enhance the 
playability. The simulation - according to our intentions - 
is far from complete as is well shown by its current 
version number: 0.1.0. 
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