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Abstract 
This paper will discuss digitization of 3D object using 
active method called the structured light method. This 
method is aimed at getting good quality reconstruction 
for low cost. The method has simpler algorithm then 
stereo vision, thus it works faster, and gives comparable 
results. 
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1 Introduction 
Three dimensional digitization is a long lasting research 
topic in computer vision. Nevertheless rapid evolution of 
shape digitizing and reconstruction methods has taken 
place in recent years. It is achieved thanks to the 
increasing power of desktop computers. Prices of 
accurate CCD sensors are falling down owing to growth 
of digital photography. The expense for methods is 
lowering and speed and accuracy are rising. 

This progress is most influenced by low-end 
digitizing methods. These methods are not depending on 
special hardware, but on cheap and common equipment. 
Ordinary PC and digital camera are usually everything 
needed by low-end methods. This group of methods can 
get good results in spite of its low cost as we will show. 
Cost effective methods can be divided by their approach 
into passive and active. 

Passive methods are based on two or more shots 
of the scene to recover 3D data (stereo vision, structure 
from motion). They are usable in great scale of problems 
where the precision is not the main goal. It is not an easy 
problem to find a correspondence between two images 
which is essential in the recognition process. This step 
consumes most of time spent on reconstruction. 
Moreover smooth surfaces without pattern are impossible 
to recover correctly. Such surface has no “corners”  which 
are fundamental for traditional methods. 

Active methods interact with the scene. Specific 
pattern is cast onto the scene, so the problem of finding 
corresponding corners becomes easier. One shot is 
sufficient to recover scene depth.. The object shape 
becomes more apparent thanks to the projected pattern 

but the texture of object is lost. Main drawback of this 
method is the need to darken whole scene and project 
light pattern. Described method is also called the 
structured light method. 

This paper will give an overview of structured 
light method in details, its advantages and disadvantages. 
In chapter 3 entitled “Projective geometry”  notation and 
important theory is explained. Chapter 4  with title 
“Triangulation”  covers analytical details of used 
triangulation method. Chapter 5 deals with building of 
complete model from set of depth maps. Finally there are 
results and conclusion. 

2 Structured light 
This group of the digitizing methods is capable create 
depth map from single shot of the scene. Chia [5], 
Proesmans [8], Vuylsteke [13] developed digitizing 
techniques in this area. 

The scene must be darkened and lit only by 
structured light, however we can use invisible infrared 
source of light so the object is not disturbed. The pattern 
is projected by strong reflector or by the fast moving 
laser beam onto the measured object. Problem with 
projectors is their small depth of field. Noise from other 
light sources can be reduced using monochromatic light 
and making the camera insensitive to other chroma by 
the filter. Original texture of the object cannot be fully 
recovered from a single shot. The second shot is usually 
taken from the same position and without structured light 
if the texture is needed. 

We can solve problem with focus using the 
moving laser beam instead of the projector, but it 
increases the cost and add problems of the 
synchronization. The laser must project entire grid while 
a shutter of the camera is open, which can add noise to 
the picture. Other solution is to use more shots. 

If the camera (or the light) differs too much from 
ideal collinear projection, this fact must be taken into 
account. This problem is usually solved using pre-
calibration and filtering or following a more 
sophisticated way with an autocalibration. Of course the 
autocalibration is not possible with single shot of the 
scene. 

Once we have a picture the first step is pattern 
recognition. Projected pattern must be recovered from 



the surface. This step is dependent on pattern of the light. 
Often regular grid pattern is used, thus recovery of 
pattern is not a problem on smooth surfaces. 

The next step is to find original position of source 
of the light. In the general scene the position of light can 
be recovered automatically, but this is not true for some 
special constellations of the camera, the light and the 
object. Shape of the object has remarkable influence on 
these constellations (Pollefeys [7]). However automatic 
determination of the light position is quite difficult 
problem in any case. 

Precision of structured light method is influenced 
by the camera and by projected pattern. Method is also 
called active triangulation. 

3 Projective geometry 
Conventions used in this paper are taken from 
Triggs [11]. 

A point in projective n-space ( n
P ) is given by a 

column ( 1)n + -vector of coordinates 1 1( )nx x +=x …

� . 
At least one of these coordinates should differ from zero. 
Affine points are given by vector ( )ux � , where u is 
nonzero scalar. Vector ( 0)=v v

� �  is asymptotic 
direction or ideal point.  

A row ( 1)n + -vector ( )d=ρ n  specifies a plane 

with normal n-vector n and offset –d. Again at least one 
of coordinates should be nonzero. Plane in an Euclidean 
geometry has homogenous normal vector n. Plane at 

infinity (0 0 1)∞ =ρ …  contains all the ideal points and 

no affine ones. 
Point x lies on plane ρ if and only if 0=ρ xi . 

Plane ρ in projective space n
P  is uniquely determined 

by n linearly independent points m1…mn. Plane is given 
by cross product of all points m1…mn: 

1 2 n
= × × ×ρ m m m… . 

Generalized cross product is a totally 
antisymmetric product which takes n vectors v1…vn of 
length ( 1)n +  and the result is a vector of length ( 1)n +  
that is orthogonal to all of the v1…vn. 

Linear transformations are ( 1)n + × ( 1)n +  
matrices. Example of metric transformation matrix:  

 
1

A
=
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T
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 (1.1) 

where t is a translation vector and R is a rotation matrix. 
Transformation is acting by left multiplication on points 
( )→x Tx  and by right multiplication by the inverse on 
planes 1( )−→ρ ρ Ti  so that point-plane products are 
preserved: 1( ) ( )−=ρ x ρ T T xi i i i . To distinguish their 
different transformation laws points are called 
contravariant and planes covariant. 

We work in projective 3D space ( 3
P ). A point is 

represented by 4-vector ( )x y z w=x � . Analogically a 

plane is represented: ( )
x y z

n n n d=ρ . A line can be 

given by two points +x v
�

α  or as intersection of two 
planes ∩ρ σ . 

The cross product has usually only two operands 
limiting vectors to 3 coordinates. But as was told above, 
we work with 4-vectors so that cross product has 3 
operands. In our formulas in next chapter only the 
simplest form of remarked cross product appears: 
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where 0 is a 4-vector ( )0 0 0 1
�

 representing point at 

space origin. 

Formula (1.2) is numerically equivalent to well known: 
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4 Triangulation 
We have one shot of the object lit by the structured light. 
The first step is to localize all key-points on the image. 
This step is strongly dependent on the specific problem 
area. Some research was done on methods capable to 
work with scenes containing sculptures. This is wide area 
covering most problems of real scenes. Temporarily key-
point localization is made manually. 

Before an analytic triangulation can be utilized, 
the image should be free of all distortions added by the 
camera. The problems can be with principal point, aspect 
ratio, skew and barrel or fisheye distortion. The camera 
must be calibrated and all distortions must be measured. 
With this knowledge we can decrease any distortions on 
the image. Triangulation algorithm is sensitive mainly to 

a
�

b
�

Figure 1: Schematic view of the triangulation process 



nonlinear distortions like barrel and fisheye distortions. 
This kind of distortions is quite common on 35 mm lens 
of compact digital cameras. After the calibration takes 
place we can pretend that the image is ideal 2D 
collineation of its 3D model. Fortunately for many 
cameras distortions are close to zero, making calibration 
step unnecessary. 

For the implementation of the next step we use 
our algorithm. More details can be found in 
(Kapusta [6]). Algorithms solving this area already exist 
but are not very accessible.  

All information from previous step is stored in 
tensor GC. Additional information is given to create 
matrices MC and ML. At the end of this chapter is 
discussed ML autodetection. 

At the beginning we have two matrices and two 
tensors. Matrices ML, MC are the projection matrices of 

light and camera, they incorporate position 
C

p , direction 

C
d
�

 and field of view (vertical FOVV and horizontal 

FOVH). Matrix MC can be obtained as scalar product of 
the scale + position matrix and rotation matrix: 
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where rotation matrix is computed as rotation about an 
arbitrary axis r

�

. 
Position of camera and light can be obtained back: 

 ,
C C L L

= =p M 0 p M 0i i . (1.5) 

Tensors GL, GC are m×n matrices of 3-vectors. GC 
represents 2D positions of m×n key-points on projective 
plane of camera. GL has cognate meaning for light, but 
values of GL can be computed by simple formula for 
regular grid. 

Rays from the camera ( ija
�

) and the light ( ijb
�

) can 

be computed as vectors: 
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where H is mapping from 2
P  to 3

P , setting Z-axis to 1. 
Now points c and d can be computed. Point c is 

lying on line 
C

+p a
�

α  and is nearest possible to line 

L
+p b

�

α , conversely point d is lying nearest to c: 
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where 
i j i j ij

= ×n a b
�
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 and 
L C

= −v p p
�

. There is again 

used ( )0 0 01=0
�

 to have correct cross product for 4-

vectors (cross product have n operands for ( 1)n + -

vectors). Result is average between both points cij and dij: 
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We can little bit optimize formula (1.8) using fact that 
( ) ( )-× × = × ×a b 0 c c b 0 ai i : 
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It is useful to quantify the error of our 
reconstruction. Since we do not have digital reference 
model to compare result with, we must get along with 
data we have computed. It is evident that for absolutely 

precise input the equation 
ij ij i j

= =c d s  should be valid. 

Noise, distortions or bad position of light add errors and 

greater error means greater distance between 
ij

c  and 
ij

d . 

The error can be evaluated as 
ij ij i j i j

− = −c s d s , or 

better with square ( ) ( )2 2

ij ij i j i j
− = −c s d s . For total error 

we can write: 

 
( )2

1 1

n m
ij ij

j i mn
σ

= =

−
=∑∑

c s
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Automatic placement of the light is based on 
minimizing total error σ. It is generally difficult problem 
to be solved exactly. Problem is solved iteratively, but 
there is always probability to fall into local minimum far 
from actual light position. 

Another way of light placement is to find epipolar 
geometry of the scene. 
 

5 Model building 
From one shot we get only one depth map. For complete 
model reconstruction, it is necessary to have more depth 
maps from various directions or even various distances. 
Depth maps alone usually do not provide information 
about the camera position the shot was taken from. The 
autopositioning of depth maps is very difficult, because a 
lot of ambiguity and a large amount of possibilities how 
depth maps can be arranged. At least the approximate 
positions must be known before the model building can 
begin. Many of following methods can automatically 



correct small deviations of the given positions and better 
align model parts. 

The surface reconstruction from range data or 
depth maps has been active area of research for several 
decades. The strategies have proceeded along two basic 
directions: reconstruction from unorganized points and 
reconstruction that preserves structure in acquired data 
(Curless [2]). 

Methods working on unorganized sets of points 

are implicit methods (Hoppe [4], Bajaj [1]). Although 
implicit methods are generally applicable, they do not 
use convenient information usually gathered during 
scanning process (such as surface normal and reliability 
estimates). Methods work well in smooth areas but they 
are not usually robust in regions with high curvature. 

Structure preserving methods can be divided into 
polygonal methods and implicit methods. Polygonal 
algorithms (Soucy and Laurendeau [10], Turk and 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 2: a) synthetic source image b) result obtained using triangulation from single shot  c) photograph of 
lit sculpture d) result with normals. 



Levoy [12], Rutishauser [9]) usually perform better than 
methods working with unorganized points, but still do 
not provide good solution in areas of high curvature. 

Implicit methods can be further subdivided into 
discrete-state voxel methods and continuous-valued 
voxel methods. Methods using continuous-valued voxels 
usually provide better results. Hilton [3] has developed 
method using weighted signed distance functions for 
merging range images. Curless [2] enhanced Hilton’s 
algorithm to cope with sensors uncertainty, incremental 
updating, hole filling, and made it more space efficient. 

6 Results 
We made a program for the proving described analytic 
formulas and our approach. User has the control on all 
important parameters of the scene which are used to fill 
input matrices. User can see in real time how the result is 
changing when he changes parameters or moves the light 
source or the camera. 

Input images can be divided into two groups. First 
group are synthetic images or virtual photographs (Figure 
2a) rendered by the computer. Second group are 
photographs (Figure 2c) of real objects. 

We use 6×6 cm slides to project different grids 
onto sculpture. Slides were taken from laser printed 
templates. The objective with high focal length was used  
to achieve minimal distortion on slides. Final photos are 
taken using digital camera and slide projector. 

Because of some distortion at projected pattern 
and digital camera, real images have greater error than 
synthetic. It was confirmed by experimental results 
(Table 1). Most visually apparent errors reveal on corners 
of grid, because of small barrel distortion detected on 
used camera. 

Source of image average total error 

synthetic (rendered) 0.6 

taken by camera 1.1 

Table 1: total error compared on 4 pictures, 2 
synthetic and 2 taken by camera. 

Direct comparison between original synthetic model and 
reconstructed counterpart proves that used method gives 
accurate results when no distortion is present at the 
pattern and the camera. 

7 Conclusions 
This method can give satisfying results. Capability to 
digitize model in real time should be its highest 
advantage, but automatic grid detection must be finished. 

Limitations of this method are quite 
understandable from the principle how it works. 
Transparent or reflective surfaces cannot be digitized. 
Tiny or huge objects cannot be lit by structured light 
from physical reasons. The object with deep relief and 

too curved surface cause that projected grid cannot be 
reconstructed. 

The single shot covers only small part of the 
object surface. Therefore it may be necessary to take 
more shots. Manual arranging these parts to compose 
entire object is a time consuming task. Here automatic 
model building can help. Unfortunately direction of 
single shots is usually not known and cannot be retrieved 
easily from common images. This fact is limiting the 
method only to the specific target areas. 
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