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Abstract

Content based 3D shape retrieval for broad domains like
the World Wide Web has recently gained considerable at-
tention in Computer Graphics community. One of the
main challenges in this context is the mapping of 3D ob-
jects into compact canonical representations referred to as
descriptors or feature vector, which serve as search keys
during the retrieval process. The descriptors should have
certain desirable properties like invariance under scaling,
rotation and translation as well as a descriptive power
providing a basis for similarity measure between three-
dimensional objects which is close to the human notion
of resemblance.

In this paper we introduce an enhanced 3D approach
of the recently introduced 2D Shape Contexts that can be
used for measuring 3d shape similarity as fast, intuitive
and powerful similarity model for 3D objects. The Shape
Context at a point captures the distribution over relative
positions of other shape points and thus summarizes global
shape in a rich, local descriptor. Shape Contexts greatly
simplify recovery of correspondences between points of
two given shapes. Moreover, the Shape Context leads to
a robust score for measuring shape similarity, once shapes
are aligned.
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1 Introduction

It can be observed that the proliferation of a specific digi-
tal multimedia data type (e.g. text, images, sounds, video)
was followed by emergence of systems facilitating their
content based retrieval. With the recent advances in 3D
acquisition techniques, graphics hardware and modeling
methods, there is an increasing amount of 3D objects
spread over various archives: general objects commonly
used e.g. in games or VR environments, solid models of
industrial parts, etc. On the other hand, modeling of high
fidelity 3D objects is a very cost and time intensive process
– a task which one can potentially get around by reusing
already available models. Another important issue is the
efficient exploration of scientific data represented as 3D
entities. Such archives are becoming increasingly popu-
lar in the areas of Biology, Chemistry, Anthropology and
Archeology to name a few. Therefore, since recently, con-
centrated research efforts are being spent on elaborating
techniques for efficient content based retrieval of 3D ob-
jects.

One of major challenges in the context of data retrieval
is to elaborate a suitable canonical characterization of the
entities to be indexed. In the following, we will refer to
this characterization as a descriptor. Since the descriptor
serves as a key for the search process, it decisively influ-
ences the performance of the search engine in terms of
computational efficiency and relevance of the results. A
simple approach is to annotate the entities with keywords,
however, due to the inherent complexity and multitude of
possible interpretations this proved to be incomplete, in-
sufficient and/or impractical for almost all data types, cf.
[46, 18].

Guided by the fact that for a vast class of objects the
shape constitutes a large portion of abstract object infor-
mation, we focus in this paper on general shape based ob-
ject descriptors. We now can state some requirements that
a general shape based descriptor should obey:

1. Descriptive power- the similarity measure based on
the descriptor should deliver a similarity ordering that



is close to the application driven notion of resem-
blance.

2. Robustness- the descriptor should be insensitive to
noise and small extra features and robust against ar-
bitrary topological degeneracies. These requirements
are relevant e.g. in case of search on the World Wide
Web for general objects, since such objects are likely
to contain these artifacts.

3. Invariance under transformations - the computed
descriptor values have to be invariant under an ap-
plication dependent set of transformations. Usu-
ally, these are the similarity transformations Rotation,
Translation and Uniform Scale.

4. Conciseness and ease of indexing- the descriptor
should be compact in order to minimize the storage
requirements and accelerate the search by reducing
the dimensionality of the problem. Very importantly,
it should provide some means of indexing – struc-
turing the database in order to further accelerate the
search process.

The outline of the rest of the paper is as follows: in
the next section we review the relevant previous work. In
Section 3 we describe the 3D Shape Contexts themselves.
In Section 4 the matching is explained and reviewed in
terms of accordance with the above criteria and 3D shape
retrieval performance. In Section 6 we present our results
and conclude in Section 7.

2 Previous Work

2.1 Systems

Up to date numerous systems for 2D image retrieval
have been introduced. To gain a good overview over the
state-of-the-art in this area we refer to the survey papers
[46, 20, 39]. As for content based retrieval of general 3D
objects, the first system was introduced in [35], which was
followed by [47], a very recent result is presented in [18].
Considering systems covering narrower domains, [1] deal
with anthropological data, [37, 13] facilitate the retrieval
of industrial solid models, [3] explores protein databases.

2.2 Spatial domain

The spatial domain shape analysis methods yield non-
numeric results, usually an attributed graph, which en-
codes the spatial and/or topological structure of an object.
Notably, in his seminal work Blum introduced the Me-
dial Axis Transform (MAT) [10], which was followed by
a number of extensions like shock graphs, see e.g. [45],
shock scaffold [30], etc. Forsyth et al. [17] represent
2D image objects by spatial relationships between stylized
primitives, [36] uses a similar approach. Further technique

having a long tradition is the geon based representation
[9]. As for 3D industrial solid models, [12, 31] capture
geometric and engineering features in a graph, which is
subsequently used for similarity estimation. Hilaga et al.
[23] presented a method for general 3D objects utilizing
Reeb graphs based on geodesic distances between points
on the mesh, which enabled a deformation invariant recog-
nition. The methods in this class are attractive since they
capture the high level structure of objects. Unfortunately
though, they are computationally expensive, most of them
suffer from noise sensitivity, the underlying graph repre-
sentation makes the indexing and comparison of objects
very difficult.

2.3 Scalar transform

The scalar transform techniques capture global properties
of the objects yielding generally vectors of scalar values
as descriptors.

2.3.1 Projection based techniques

Some techniques both in 2D and in 3D are based on coef-
ficients yielded by compression transforms like the cosine
[40] or wavelet transform e.g. in [26]. Fourier descriptors
[51] have been applied in 2D, however, these are hard to
generalize to 3D due to the difficulties in parametrization
of 3D object boundaries. Moments can generally be de-
fined as projections of the function defining the object onto
a set of functions characteristic to the given moment. Since
Hu [24] popularized the usage of image moments in 2D
pattern recognition, they have found numerous applica-
tions. Teague [48] was first to suggest the usage of orthog-
onal functions to construct moments. Subsequently, sev-
eral 2D moments have been elaborated and evaluated [49]:
geometrical, Legendre, Fourier-Mellin, Zernike, pseudo-
Zernike moments. 3D geometrical moments have been
used by [14, 33], and a spherical harmonic decomposi-
tion was used by Vranic and Saupe [50]. Funkhouser et
al. [18] profit from the invariance properties of spheri-
cal harmonics and present an affine invariant descriptor.
The main idea behind this is to decompose the 3D space
into concentric shells and define rotationally invariant rep-
resentations of these subspaces. In this way a descrip-
tor was constructed which was proven to be superior over
other 3D techniques with regard to shape retrieval perfor-
mance. In [49] 2D Zernike moments were found to be
superior over others in terms of noise sensitivity, infor-
mation redundancy and discrimination power. Guided by
this, Canterakis [11] generalized the classical 2D Zernike
polynomials to 3D, however, in his work Canterakis con-
sidered exclusively theoretical aspects. However, all the
approaches mentioned above do not provide richness and
intuitivity since moments are based on projecting to lower
dimensionalities.



3 3D Shape Contexts

Our representation for a 3d shape is a set ofN histograms
corresponding toN points sampled from the shape bound-
ary, also referred to as aShape Distribution[34], which
need not (and typically will not) refer to keypoints such
as maxima of curvature or inflection points. We prefer
to sample the surface of the shape with roughly uniform
spacing (cf. figure 1), though this is also not critical. The
sampling method for constructing used throughout this pa-
per adapts from Osada et al. [34]. It is a fast and efficient
random sampling: The complexity for takingS samples
from a 3D shape withN triangles isO(Slog(N)).

Figure 1: Roughly uniform sampling of a 3D object. a)
unsampled mesh, b) mesh sampled with 500 samples and
normals.

Now consider the set of vectors originating from one sam-
ple point to all other points in the shape (cf. figure 2).
These vectors express the appearance of the entire shape
relative to the reference point. Obviously, this set ofN−1
vectors is a rich description, since asN gets large, the rep-
resentation of the shape becomes exact.

The full set of vectors as a shape descriptor is inappro-
priate, since shapes and their sampled representation may
vary from one instance to another. In contrast, we iden-
tify the distributionover relative positions as a robust and
compact, yet discriminative descriptor. For a pointP on
the shape, we compute a coarse histogram of the relative
coordinates of the remainingN−1 points. This histogram
is defined to be theShape Contextof P. The reference
orientation for this shape context can be absolute or rel-
ative. In Section 3.1.2 we describe how to derive such a
relative reference frame.

3.1 3D Shape Histograms

A common approach for similarity models is based on the
paradigm of feature vectors. Afeature transformmaps a
complex object onto a feature vector in multidimensional
space. The similarity of two objects is then defined as the
vicinity of their feature vectors in the feature space.

We follow this approach by introducing the 3D shape

Figure 2: a) Mesh with 50 samples, b) Just the 50 sam-
ples, c) 49 Vectors originating from one sample point, d)
49 Vectors originating from another sample point.

histograms as intuitive feature vectors. In general his-
tograms are based on a partitioning of the space in which
the object reside, i.e. a complete and disjoint decompo-
sition into cells which correspond to the bins of the his-
tograms. Figure 3 shows a 2D example of three types of
basic space decompositions: the shell model, sector model
and combined model.

Figure 3: Shells and sectors as basic space decomposition
for shape histograms. In each of the 2D examples a single
bin is marked.

3.1.1 Shell Model

The 3D is decomposed into concentric shells around the
center point. This representation is particularly indepen-
dent from a rotation of the objects, i.e. any rotation of
an object around the center point results in the same his-
togram. Invariance in scale is easily achieved by normaliz-
ing the shape extension and a [0,1]-parametrization of the
shell-radii. With equal radii, however, the shell volumes
grow quadratically with the shell index. To avoid weight-
ing outer shells over inner shells we suggest a logarithmic
parametrization of the shell radii (cf. figure 4). The radius



r of shell i then computes dependent of the log-basea and
the number of shellss:

r i =
1
s

loga(a
s i
s
) (1)

It is obvious that by tuningaone can easily weight shell-
bins distance-dependent. Usinga = 2 for example will re-
sult in shell-bins with equal volumes, thus equal weighted.
Higher values fora will weight nearby samples exponen-
tially more than those far away.

Figure 4: 2D Examples of a Histogram in Shell Model.
The left one has equi-distanced shells (a = 1,s= 3) while
the right one uses logarithmic radii (a = 2,s = 3). Note
that in 2D the area of the shells grows linearly, while in
3D the shell volumes grows quadratically.

3.1.2 Sector Model

The 3D is decomposed into sectors that emerge from the
center point of the shape. Obviously, this representation
is invariant in scale but not in rotation. In a normaliza-
tion step we perform translation and rotation of the object
providing for rotation- and translation invariance, respec-
tively. After the translation which maps the center of mass
onto the origin we perform a Principal Axes transform on
the object. The computation for a set of 3D points starts
with the 3 x 3 covariance matrix where the entries are de-
termined by an iteration over the coordinates(x,y,z) of all
vertices. Here, we assume a 3D object is given as a Trian-
gle Face set since this has become a standard representa-
tion for 3D objects. The vertices(x,y,z) then derive from
the centers of mass of the respective triangle weighted by
its unsigned area and normalized by the total area of the
object:

1. Center of mass of trianglei:

fi =
1
3
· (v1 +v2 +v3)

2. Unsigned area of trianglei:

∆ fi =
1
2
· ‖(v2−v1)× (v3−v1)‖

3. Pointi to contribute in the covariance matrix:

(x,y,z)i =
∆ fi fi

∑n
j=1 ∆ f j

4. The covariance matrix: ∑x2 ∑xy ∑xz
∑xy ∑y2 ∑yz
∑xz ∑yz ∑z2


The eigenvectors of this covariance matrix represent the

principal axes of the original 3D point set, and the eigen-
values indicate the variance of the points in the respec-
tive direction. As a result of the Principal Axes transform,
all the covariances of the transformed coordinates vanish.
Although this method in general leads to a unique orien-
tation, this does not hold for the exceptional case of an
object with at least two variances having the same value.
An example for that would be a perfect sphere but in such
a case any orientation in the sphere will result in the same
histogram. Additionally, one must pay attention to the di-
rection of the eigenvectors within the diagonalization pro-
cess. Therefore we post-perform aheaviest axis flipsim-
ilar to [15]. The basic idea behind this is to sum up posi-
tive and negative dotproducts of all vertices with the nor-
malized eigenvectors, i.e. vertices are weighted linearly to
their projected distance to the center of mass of the object.
To normalize so that all objects have the same orientation
we flip the axes, so that the object is ”heavier” on the pos-
itive side. Additionally we sort the axes such that the new
x-axis becomes the heaviest axis.

Figure 5: Normalization stages - a) Original object, b) Ob-
ject after re-centering, c) Object after rotation and scaling,
d) Object after flipping

Once the 3 Principal Axes of the 3D shape are com-
puted we can easily obtain a unique orientation for each
histogram. Since the center of mass of a 3D object is ro-
bust we define the first axis of the shape context to point
to the center of mass of the shape. This defines a plane
through the respective sample point with the normal of
this first axis. Rather than computing two principal axes
again in this plane we do a simple projection of the three
yet computed axes onto that plane (cf. figure 6).



Figure 6: Unique Orientation of a sector model histogram.
a) The Orientation of a 3D shape derived by PCA, b) The
orientation of a histogram derived by simple projection.
Note: The first axis points to the center of mass. The other
two axes are obtained by projections of the principal axes.

Another simple idea for a unique orientation is to use the
normal information in the sample point. Unfortunately,
normals of 3D objects as retrieved from the WWW in gen-
eral suffer from noise what makes them unsufficient to use
for a robust descriptor. Furthermore, normals are local fea-
tures and thus, cannot easily be used for global matching
of two shapes.

3.1.3 Combined Model

The combined model represents more detailed information
than pure shell models and pure sector models. A sim-
ple combination of two fine-grained 3D decompositions
results in a high dimensionality. However, since the reso-
lution of the space decomposition is a parameter in any
case, the number of dimensions may easily be adapted
to the particular application. With regard to retrieval we
also mention methods to reduce dimensionality in section
5.1.4. For the combined model we suggest a log-polar co-
ordinate system, i.e. a combined shell-sector-model with
logarithmic shell radii (cf. figure 7).

Figure 7: A 2D example of log-combined model. The
numbers are the bin-indices.

4 Matching

In this section we give a detailed view on how to locally
match two 3D shape contexts (cf. section 4.1) and show
how 3D shape contexts can be used for the overall match-
ing of two shapes (cf. section 4.2). For the global match-
ing we present to methods: a 1-1 matching and a matching
that is insensitive to sample count. For the latter we review
some methods that enable efficient retrieval and indexing
of shape with the 3D shape contexts in Section 5.

4.1 Local Matching

Concretely, for a pointpi on the shape, the corresponding
histogramhi is defined as

hi(k) = #{q 6= pi : (q− pi) ∈ bin(k)} (2)

As mentioned above, this histogram is said to be the
shape contextof pi . Consider a pointpi on the first shape
and a pointq j on the second shape. LetCSi, j = CS(pi ,q j)
denote the cost of matching these two points. We refer to
CSas theShape Term. As shape contexts are distributions
represented as histograms, it is natural to useχ2 distance:

CSi, j =
1
2

K

∑
k=1

[hi(k)−h j(k)]2

hi(k)+h j(k)
(3)

wherehi(k) and h j(k) denote theK-bin normalized his-
togram atpi andq j , respectively. This matching will re-
sult in close distributions. An example for applications
with absolute reference frames are intra-industry databases
where the objects are likely to have the same alignment. In
an application environment where the reference frame of
the shapes is not absolute, i.e. some kind of pose normal-
ization is needed, we may take the local appearance of the
shape context into account. With regard to that, we en-
courage the usage of a more subtle measuring that regards
distances in orientations and relative positions as well as
distances in distribution.

Consider two reference frames{uk},{vk} with k ∈
{1,2,3} both pairwise orthogonal with‖uk‖ = ‖vk‖ = 1
representing the respective orientations ofhi andh j . The
distance between these two reference frames can then be
measured in terms of angle distances between the corre-
sponding axis vectors:

CAi, j =
1

4N
·

3

∑
k=0

αkβk · (1−< uk,vk >)2 (4)

where< x,y > denotes the standard dot-product between
vectorsx andy. We refer toCAas theAppearance Term.
The weights{αk}, {βk} can either be user-set or automat-
ically derived from theheaviness-relation between the re-
spective principal axes mentioned in section 3.1.2. For the
latter assumption the following holds both for{αk} and
{βk}:



1. 1> α1 ≥ α2 ≥ α3 > 0 - the weights are sorted and
none is zero

2. ∑αk = 1 - the weights sum up to 1

Matching with theAppearance Term alone will result
in histogram- correspondences with very similar orienta-
tions. Thus, after an applied pose normalization (section
3.1.2), this term is a compact and quickly computable ori-
entation descriptor. However, it is obviously neither in-
variant to rotation as the Shape Term nor robust against
distance displacements. To achieve that, we finally add
a third termCP - the Position Term - that measures a
distance of relative positions between pointspi andq j on
the two shapes being matched. Sincepi andq j are repre-
sented relative to thecenter of massof the respective shape
and the shape extensions are both [0,1]-normalized we can
simply denote this last term as a weighted quadratic form
distance of the respective points:

CPi, j =
3

∑
k=1

(αkpi,k−βkq j,k)2 (5)

wherepi,1 is the x-coordinate in the coordinate system of
the shape and{αk},{βk} are the same weights as in equa-
tion 4. A notable characteristics of thePosition Term is
the similarity to the squared euclidian distance. For sym-
metrical shapes like spheres, cylinder, etc. the weights
{αk} are very close resulting in symmetrical correspon-
dences found with the position term. With regard to
clustering/vector-quantizationthis can be a useful feature
for grouping shape contexts together (cf. section5).

For the final local matching valueCi, j we suggest the
weighted sum of these three terms:

Ci, j = γ1 ·CSi, j + γ2 ·CAi, j + γ3 ·CPi, j (6)

where{γk} are again weights in [0,1] with∑γk = 1, which
can be user-set or automatically derived with the same tool
as for the weights{αk}. The idea behind automatic deriva-
tion of {γk} is the observation that for symmetrical shapes
the position term becomes linearly less discriminative in
relative positions. Note that both the appearance term and
the position term are the more discriminative the better the
pose estimation was done in the preprocessing. We review
the effect of tuning{γk} in Section 6.1.

4.2 Global Matching

With regard to 3D Shape Contexts a global matching
means finding correspondences between similar sample
points on two shapes. Once these correspondences have
been set up an affine transformation that maps the second
shape onto the first shape can be estimated with standard
least squares method. In the following, we briefly explain
how we find these correspondences.

4.2.1 Hard Assignments

Given the set of costsCi, j between all pairs of pointspi

on the first shape andq j on the second shape, we want to
minimize the (normalized) total matching cost,

H(π) =
1
n
·

n

∑
i=1

Ci,π( j) (7)

subject to the constraint that the matching be one-to-one,
i.e. π is a permutation of{1, . . . ,n}. This is an instance
of the square assignment (or weighted bipartite matching)
problem, which can be solved inO(N3) time using the
Hungarian method. In our experiments (cf. section 6) we
used a more efficient algorithm of Joncker and Volgenant
[38] The input to the assignment problem is a square cost
matrix with entriesCi, j . The result is a permutationπ(i)
such thatH(π) is minimized.

Figure 8: An example of a square 5×5 cost matrix

In order to devise a robust handling of outliers, one can
add ”dummy” nodes ([6]) to each point set with a constant
matching cost ofεd. In this case, a point will be matched
to a ”dummy” whenever there is no real match available at
smaller cost thanεd. Thus,εd can be regarded as a thresh-
old parameter for outlier detection. Similarly, when the
number of sample points on two shapes is not equal, the
cost matrix can be made square by adding dummy nodes
to the smaller point set. We reviewed the method above in
our results (cf. section 6) but for our experiments we used
a slightly different approach, which we found to be more
suitable.

Having a large database of fine-sampled objects, a ”one-
to-one” matching between a query shape and a possibly
large candidate list of high-resolution shapes would result
in far too high computational costs. To improve this sit-
uation, we introduce Shape Contexts matching withsoft
assignmentsin contrast.

4.2.2 Soft Assignments

In the general case two shapes will have different sample
countsn1 andn1. We assume here thatn2 ≥ n1 but the
bidirectional is also not critical.

Figure 9: An example of a 5×10 cost matrix



Usingsoft assignmentsnow allows assigning one sam-
ple point pi on the first shape to match toki sample
points{ql1, . . . ,qlki

};{l1, . . . , lki} ⊆ {1, . . . ,n2} on the sec-
ond shape with local matching values{Ci,l1, . . . ,Ci,lki

}. To
determine which of then2 samples on the second shape
should match topi we set up a threshold that is determined
by the cost matrix entries in rowi

εi = σi · |max{Ci, j}−min{Ci, j}| (8)

where

σi =

√
n2

∑
m=1

(Ci,m−min{Ci, j})2 (9)

Using this threshold we can then establish a set ofki can-
didate points for each rowi:

{Ci, j : Ci, j ≤ min{Ci, j}+ εi}

which we will denote as{Ci,l1, . . . ,Ci,lki
}.

Having ki matching values instead of one, the total
matching cost now needs a more subtle computation:

H(n1,n2) =
1
n1
·

n1

∑
i=1

ki

∑
m=1

w(i, lm) ·Ci,lm (10)

with weights

w(i, lm) =
min{Ci, j}+ εi −Ci,lm

ki · εi
(11)

,i.e values with a larger distance to the minimum are
weighted less. Note that the weights{w(i, lm)} are nor-
malized byki . We note that one could use other filters
instead, for example the Gaussian kernel. Note also that if
matching a shape to itself small values forki imply that the
sample pointpi is likely to be afeature pointof the entire
shape. Using the approach described above, the time com-
plexity of finding the correspondences and minimization
of H(n1,n2) is O(n1n2)

5 Future Work

Due to the enormous and still increasing size of modern
databases that contains tens and hundred of thousands of
3D objects, the task of efficient query processing becomes
more and more important. In the case of quadratic form
distance functions, the evaluation time of a single database
increases quadratically with the dimension. Thus, linearly
scanning the overall database is prohibitive.

5.1 Iterated Query and Fast Pruning

Given a large set of known shapes the problem is to de-
termine which of these shapes is most similar to a query
shape. From this set of shapes, we wish to quickly con-
struct a short list of candidate shapes which includes the

best matching shapes. After completing this coarse com-
parison step one can then apply a more time consum-
ing, and more accurate, comparison technique to only the
shortlist. We want to leverage the descriptive power of
shape contexts towards this goal of quick pruning. A few
key methods we propose to use with 3D Shape Contexts
and plan for the future follow below.

5.1.1 Representative Shape Contexts

Belongie et. al[32] used this method for 2D Shape Con-
texts on the COIL-100 database. It can easily be adapted
to use with 3D Shape Contexts. Given two discriminable
shapes we do not need to compare every pair of shape con-
texts on the objects to know that they are different. When
trying to match two dissimilar shapes none of the shape
contexts of the first shape have good matches on the sec-
ond shape. For each of the known shapesSi , a larges
(about 100 to 500) of shape contexts{SCj

i : j = 1,2, . . . ,s}
is computed. But for the query shape, only a small num-
ber r (about 5 to 50) of shape contexts are computed by
randomly selectingr samples on the shape. Comparisons
with each of the known shapes is then done only with these
r shape contexts. To compute the distance between a query
shape and a known shape the best matches for each of
the r shape contexts have to be found involvingr-Nearest
Neighbor Search. Distances are again computed using the
χ2 distance.

dist(Squery,Si) =
r

∑
j=1

χ
2(SCj

query,SC∗i )

whereSC∗i = argminuχ2(SCj
query,SCu

j ).

5.1.2 Shapemes

The full set of shape contexts for the known shapes con-
sists ofN · s d-dim vectors (N: shapes in the set,s: shape
contexts for each shape,d: bins in each shape context). A
standard technique in compression for dealing with such a
large amount of data is vector quantization. Vector quan-
tization involves clustering the vectors and then represent-
ing each vector by the index of the cluster that it belongs
to. Belongie et. al [32] call these clustersShapemes-
canonical shape pieces. To derive themk-means clustering
is applied to all shape contexts from the known set. Eachd
bin shape context is quantized to its nearest shapeme, and
replaced by the shapeme label (an integer in{1, . . . ,k}).
By this, each collection ofs shape context (d bin his-
tograms) is reduced to a single histogram withk bins. In
order to match a query shape, the same vector quantization
and histogram creation is performed on the shape contexts
of the query shape. Then nearest neighbor search is per-
formed in the space of histograms of shapemes. Since the
naive algorithm for doing nearest neighbor searches takes
O(ND) time Belongie et. al [32] suggest using recent work
of the theory community on theε-approximate nearest



neighbors(ε-NN) problem that can be applied here. Indyk
and Motwani [25] describe an algorithm for doingε-NN
queries inO(Dpolylog(N)) time that uses random projec-
tions and the Johnson-Lindenstrauss lemma [27].

5.1.3 Optimal Multistep k-Nearest Neighbor

To achieve a good performance in scanning databases
one can also follow the paradigm of multistep query pro-
cessing: An index-based filter step produces a set of
candidates, and a subsequent refinement step performs
the expensive exact evaluation of the candidates [41][2].
Whereas the refinement step in a multistep query proces-
sor has to ensure the correctness, i.e. no false hits may
be reported as final answers, the filter step is primarily re-
sponsible for the completeness, i.e. no actual result may
be missing from the final answers and, therefore, from the
set of candidates. The method of [3]fulfills this property
[43] and the produced candidate list was proven to be op-
timal [3][2]. Thus, expensive evaluations of unnecessary
candidates are avoided. Only for the exact evaluation in
the refinement step, the exact object representation is re-
trieved from the object server.

5.1.4 Reduction of Dimensionality for Quadratic
Forms

A common approach to manage objects in high-
dimensional spaces is to apply techniques to reduce the
dimensionality. The objects in the reduced space are then
typically managed by any multidimensional index struc-
ture [19]. The typical use of common linear reduction
techniques such as the Principal Components Analysis
(PCA) or Karhunen-Lòeve Transform (KLT), the Discrete
Fourier or Cosine Transform (DFT,DCT), the Similarity
Matrix Decomposition [22] or the Feature Subselection
[16] includes a clipping of the high-dimensional vectors
such that the Euclidean distance in the reduced space is al-
ways a lower bound of the Euclidean distance in the high-
dimensional space. Ankerst et. al [3] mention three im-
portant properties of the reduced distance function devel-
oped in the context of multimedia databases for color his-
tograms [42]: First, it is a lower bound of the given high-
dimensional distance function. Second, it is a quadratic
form again. Third, it is the greatest of all lower-bounding
distance function in the reduced space.

5.1.5 Ellipsoid Queries on Multidimensional Index
Structure

Due to the geometric shape of the query range, a quadratic
form-based similarity query is called anellipsoid query
[41]. An efficient algorithm for ellipsoid query process-
ing on multidimensional index structures was developed
in the context of approximation-based similarity search for
3D surface segments [28][29]. The method is designed for
index structures that use a hierarchical directory based on

rectilinear bounding boxes such as theR-tree [21], theR+-
tree [44], theR∗-trees [5],X-tree [8][7], and Quadtrees
among others. The technique is based on measuring the
minimum quadratic form distance of a query point to the
hyperrectangles in the directory. Recently, an improve-
ment by using conservative approximations has been sug-
gested [4].

6 Results

We implemented the algorithms in C++ and ran the experi-
ments on a P3-500 MHz and a P4-2.66 GHz PC. Figure 10
shows a table of the computation times measured. In this
experiments we used both computed 3D primitives gener-
ated with the software 3ds Max and a few representative
3D objects downloaded fromhttp://www.3dcafe.com.

Figure 10: Performances measured for different parame-
ters, like bin count, sample count, etc.

6.1 Parameter Effect

Tuning{γk} affects global matching of two shapes in sev-
eral ways. Since the involved terms -Shape Term, Ap-
pearance Term and Position Term - all focus on least
squares they can be linearly combined (recall Equ. 6). We
show now some matching results on primitive shapes to
outline their characteristics. All the matching shown be-
low have been done using - unless otherstated - 100 sam-
ples,(6,12) equally spaced angle bins and 4 log2-shells.
Figures 11,12,13 show examples of 1-1 correspondences
found only using one of the three terms.

6.2 Hard- vs. Soft- Assignments

The main drawback using hard assignments is the con-
straint that the matching is one to one. That means that
a possibly good matching between two sample pointspi2
andq j has to be discarded (cf. figure 14) ifq j was pre-
viously assigned to another sample pointpi1 resulting in
a penalty in minimizing the total costH(π) (cf. Equ. 7).
Noise or irregularity in sampling would then result in a
worse global matching. Soft assignments do not suffer



Figure 11: 1-1 correspondences with only the Shape Term.
a)-c) show good matches, d) shows asymmetrical match
subject to the constraint that one sample cannot be re-
assigned (cf. section 6.2). Note that the matched his-
togram in the second shape regarding its orientation al-
though has a very closedistribution to the one in the first
shape.

from this (cf. figure 15). Moreover, multiple samples in
the second shape can be assigned to one sample in the first
shape. However, soft assignments verify that each sam-
ple in the first shape will have an assignment but it does
not guaraant that all samples in the second shape will be
assigned.

6.3 Sample Count

We examine the robustness to different sample counts uti-
lizing an efficient pruning and indexing approach (cf. Sec-
tion 5). Figure 16 shows how overall matches change
with the sample count. Note that the matching values with
lower sample counts are higher than those with higher res-

Figure 12: 1-1 correspondences with only the Appearance
Term. a) shows a good match on equally aligned objects,
b) shows a match with different alignment. Note that
although not invariant to rotations the Appearance Term
found a close orientation and thus a symmetrical sample.

Figure 13: 1-1 correspondences with only the Position
Term. a)+c) show good matches, b)+d) show symmetri-
cal matches appearing in highly symmetrical shapes.

Figure 14: Problems withhard assignments: a) ”suc-
ceeded” match, b) a ”failed” match. The random sampling
took 2 samples in the first shape but only 1 in the second
shape. Since the assignment could not be reused the next
most similar point was assigned.

olution - the reduced low-resolution matching is a lower
bound for all higher resolution matchings.

6.4 Noise

Here we show examples on the robustness to noise of our
descriptor. In Figure 17 noise was added to the 3D object.
We used hard assignments there and only the shape term
since there was no need for pose estimation. We matched
the original object to the ones with noise applied and noted
the first four match results due to the fact that sampled rep-
resentations of a 3D object vary from instance to instance.

Figure 15: The same situation as in Figure 14 withsoft
assignments. a)-c) show how 3 samples in the first shape
are re-assigned to the same sample in the second shape.



Figure 16: Matching with different sample counts. The
Original object was sampled with just 100 samples. b)-f)
show overall matchings. In b) the sample count is lower
than that of the original object in a). It shows the bidirec-
tional case mentioned in section 4.2.2. Note that the re-
duced matching is a lower bound for all higher resolution
matchings.

6.5 Real World Objects

In our experiments we applied 3D Shape Context match-
ing to real world objects plain downloaded from the
WWW. None of them was corrected, aligned, scaled or
such. We used just 200 samples with(6,12) sector bins
and 6 log2-shells each and hard assignments for the match-
ing. Figure 18 shows the result. All objects in one row
were matched to the leftmost object. The rightmost ob-
ject in each row was meant to be dissimilar. Beneath the
images are overall matching values

7 Conclusions

In this paper we utilized the 3D Shape Contexts for the
purpose of content based retrieval of 3D objects. The qual-
ity of the descriptor regarding the retrieval performance
was verified also with respect to other related recent tech-
nique. As it turns out, the 3D Shape Contexts are rich
and powerful descriptors for general 3D objects in terms
of retrieval performance and robustness against topologi-
cal and geometrical artifacts plaguing a large amount of
freely available shapes.
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