
Graphical Interfaces for C#*

Milan FrankF, Ivo HanákH, Tomáš SmlsalS, Václav Skala@

Department of Computer Science and Engineering
University of West Bohemia

Plzeň, Czech Republic

Abstract
A new environment called .NET was recently introduced
to wide public. However, this environment does not
contain libraries for advanced graphical output.
Therefore it is necessary to make such libraries available
to .NET. This paper describes our implementation of
graphical library interfaces. The implementation allows
cooperation of graphical interfaces with .NET. We have
dealt with interfaces of libraries such as OpenGL,
DirectX, and Visualization Toolkit (also known as VTK).
A short description of libraries is included as well as a
short introduction to .NET environment. We also present
results, advantages, and disadvantages of our
implementation. This paper contains neither comparison
of the graphical libraries nor comparison of .NET
environment and other environments.

Keywords: .NET, OpenGL, DirectX, Direct3D, VTK,
C++ Managed Extension, C#

1 Introduction
This paper is focused on a pure implementation task
rather than in explanation of a general theory or specific
graphical algorithms. However, the described solution
seems to be interesting and useful to people within a
computer graphics community. The reason is simple:
there are many people using the OpenGL, Visualization
Toolkit [1] (VTK) or DirectX, who want to benefit from
.NET Framework features. Simply, it is a runtime
environment, which hides the operating system layer to
the application and unifies single machine and network
environments into one (see [2]). Later, we will describe
what a .NET Framework stands for in more detail.

1.1 The Basic Idea

The .NET Framework seemed to be very interesting for
people from the area of computer graphics that we
decided to implement some of the well-known graphical
interfaces in it. The VTK, OpenGL and DirectX have
been taken into account. These interfaces are widespread
and having them prepared in the .NET Framework, it is
easy to extend our old working algorithms with new
features and functionality. For example, a developer used
to write a code for OpenGL can simply continue with a
development with it, build it in .NET Framework and
easily add whatever other network functionality he
wants.

We have implemented the VTK, OpenGL and
DirectX interfaces for use within the .NET Framework. It
fulfills well our objectives given at the early beginning.
Now, graphics developers can also work with the fully
object oriented programming (OOP) language C#. It
allows more inheritance, deriving and polymorphism into
the computer graphics.

1.2 The .NET Framework

The .NET Framework is something like a (Java)
virtual machine. It allows runtime environment
functionality to any .NET application on whatever
hardware platform or operating system, where the .NET
Framework is implemented. The .NET is based on
Common Language Infrastructure (CLI) technology,
which ensures a right communication between
independent application and specific hardware or
operating system. The CLI is used by many libraries,
which are extending it. These libraries are referred to as
frameworks. For example, they provide application
interfaces (APIs) or programming abstractions.

Some beginners to the .NET have problems with
correct understanding of language interoperability. It
may seem that C# is the basic programming language of
a whole .NET and that other languages are only
something as extensions. Actually, C# is really the native
language of the .NET. However, .NET applications can
be written in any language, which meets some
requirements given by specifications (concretely the
Common Language Specification). The language
interoperability is conditioned by some mechanisms as

* Project supported by the Ministry of Education of
the Czech Republic: Project MSM 235200005 and
Microsoft Research Ltd.: Project ROTOR.

F mfrank@students.zcu.cz
H hanak@students.zcu.cz
S tscz@centrum.cz
@ skala@kiv.zcu.cz

common data types system (CTS), data marshalling, etc.
All the .NET languages at the same way share the CTS.
It has to be noted that a source code is compiled into
something similar to byte-code and additional type
information is included as metadata.

The result is mixture of intermediate code and
metadata, which are still carrying a description of which
types will be available at the runtime. In other words, the
intermediate code contains complete information to be
compiled into a native code of a used processor. Let us
mention at least one advantage of the previously stated
principle. It is possible for execution engine to verify the
type safety and code correctness just before the execution
is done.

It is important to understand this background
information to be able to read the documentation
provided by the Microsoft Company.

2 Graphical Interfaces

2.1 OpenGL

OpenGL is a graphic library based on commercial
graphical system by SGI [3]. It is used in many
applications including games and industry. It offers an
interface and facilities for projecting 3D objects on 2D
screen (or into image), but just the projection is not the
only purpose of the library.

This library provides complete rendering pipeline,
which handles lighting, texturing and transformations.
The result of 3D world projection is then rendered to the
given frame buffer or window of current (underlying)
GUI (window system).

The object geometry can be specified using few basic
render primitives, such as points, lines, triangles and
quads. It includes support for triangle fans and strips. The
library as a standard part of the rendering pipeline also
provides light and lighting computation. It is possible to
choose from common light types, such as point light,
directional light and reflector and to set up their
parameters. These light types are often supported by the
hardware.

It is also possible to cover surface of every rendered
primitive with user defined 2D or 1D texture. This
includes support for multi-texturing and mip-mapping as
a standard facility of the library.

Support for transformations is provided by
composition of particular transformations, which are
specified by matrices. These particular transformations
can be set either by a user (e.g. in the form of matrix) or
by standard library functions. Such functions offer a
possibility to parameterize basic transformations, such as
rotation around given axis, translation by a given vector
and scaling by given coefficients.

OpenGL is aimed at visualization of 3D objects. It is
also possible to use OpenGL for 2D output because the
interface contains functions for setting and retrieving

values of pixels inside a specified area (rectangle) at the
target frame buffer. Unfortunately, these functions do not
have good hardware support and their capabilities are not
sufficient enough. E.g., they use nearest-neighbor
approach when scaling due to which the visual result is
not good. Due to that it is better to use simple 3D objects
with texture mapping instead of these functions.

Interface is the most important part of a library. It is
the only part visible to a user. In the case of OpenGL this
interface consists of a group of functions and constants.
These functions are not grouped into classes so it is also
possible to use the library in a non-object-oriented
languages (e.g., C).

Interface structure (i.e., contained functions and
constants) is defined by specifications, which are open to
the public. This specification also describes behavior and
prescribed reaction of the library to calls of its interface
functions. Important advantage of OpenGL interface is
its full backward compatibility. Each new version neither
adds a complete set of functions nor modifies existing
ones. It just enlarges the existing set of functions by new
ones. These additions usually follow features, which are
implemented in the available hardware.

From inside view behavior of OpenGL is similar to a
state machine. Each function (excluding function used to
retrieve data and state) modifies the current state of the
machine. This state then influences the result of the
rendering.

Interface functionality and behavior are described by
standardized specification. However, a real
implementation is something a little bit different. It
follows behavior described in the specification but in
some cases (usually error handling) it slightly differs.

Some implementations provide robust and very
stable background so they are able to absorb user's
mistakes without any visible feedback while others
strictly follow the specifications and in the case of such
mistake they provide an unpredictable output.

This depends also on the used graphical hardware and
sometimes on the used version of the device drivers. It
can lead to difficulties while debugging when user
develops his/her application using robust implementation
and then get strange output using another, less robust.

OpenGL provides functionality for rendering of basic
primitives with defined properties (e.g., lights, texture,
etc.). Unfortunately, this functionality is sometimes not
sufficient enough or its use is too difficult. Therefore
together with OpenGL there exist several libraries (GLU,
GLUT) or add-ons (GL Extensions).

One of these is the GLU library. This library
provides facilities for rendering and tessellation of
parametric surfaces as well as useful functions for setting
projection.

Another case of such library is the GLUT library. It
aims at simplification and unification of OpenGL
initialization and its cooperation with currently available
GUI. This is because OpenGL interface itself is

standardized by specifications while its initialization and
cooperation with current GUI is not. Also OpenGL does
not contain any facilities for input, library just handles
output. Therefore the GLUT library provides
environment, which unifies these tasks and makes source
code portable to different platforms.

Add-ons such as GL Extensions were mentioned
last. These are part of the OpenGL library and provide a
possibility to use the latest hardware features, although
they are not available in specifications yet. This makes
GL Extensions heavily hardware dependent – since they
are not part of the specification, each graphical hardware
vendor usually creates his own set.

The interface consists of a set of static functions and
numeric constants. Thanks to that, it is possible to have
OpenGL available in various programming languages.
Unfortunately, such construction of the interface can
sometimes lead to not very readable source code. Also
the use of GL Extensions can be a source of difficulties
due to its hardware dependency.

To show how an actual source code using OpenGL
looks like, there is a short and simple example (see
Figure 1). This example (in C language) should provide a
possibility to compare OpenGL source code with other
introduced graphical interfaces. It does not contain any
code used to cooperate with current GUI.

glClearColor(, , ,);
glClear(GL_COLOR_BUFFER_BIT);
glColor3d(, ,);
glBegin(GL_TRIANGLES);
glVertex3d(, ,);
glVertex3d(, ,);
glVertex3d(, , 0.0);
glEnd();
glFlush();

0 0 0 0

1 1 1

-1.0 -1.0 0.0
0.0 1.0 0.0
1.0 -1.0

Figure 1 - Example of OpenGL source code

The output of the example is a white triangle on black
background. Fist function in the example sets color
(black) for clearing the background. Then the
background is cleared with such color. Afterwards the
color of the triangle is set. The following block of the
source code defines the triangle (i.e., sets coordinates of
its vertices). The last function ensures that all functions
above are actually performed (i.e., they do not stay
waiting in the queue or buffer to be performed later).

2.2 DirectX Graphics = Direct3D

DirectX is a set of application interfaces (APIs), which
take the advantage of device independent functions to
simplify game related tasks, performed by the computer.
The DirectX API handles most of the I/O aspects you
need at a very low-level, and therefore it will certainly
pay off to not use the standard Windows I/O functions
provided by the GDI in order to gain as much speed as
possible.

DirectX provides a low-level access to hardware
functionality of available peripheral hardware devices,
such as graphical adapter, sound card, etc. Very

important fact is that all this technology is based on a
Component Object Model (COM). In other words,
DirectX is a set of COM components, each providing
some interfaces, which can be divided into subsets with a
similar functionality. One of the subsets handle all about
the graphics and is called DirectX Graphics. It combines
previous 3D and 2D graphic components (Direct3D and
DirectDraw) into one and the name Direct3D remained
for both. (Now, the entire planar graphic must be done
via 3D component.)

To get idea of DirectX usage, see Figure 2 (code
snippet that draws a triangle). This code draws a triangle,
each vertex in a different color. The inside area pixels are
colored by interpolating colors in triangle vertices. First,
we get a vertex buffer to draw all scene vertices on a
graphic card. Second, an adequate stream is created for
our vertex buffer, which we have to lock for our job. On
following lines is only declaration of a three-element
array that includes coordinates and opacity of the three
vertices of our triangle. Finally, we have to send the
vertices to a device and unlock the vertex buffer. Other
code snippets are presented in [4].

VertexBuffer vb =
(VertexBuffer) sender;

GraphicsStream stm =
vb.Lock(0, 0, 0);

CustomVertex.TransformedColored[]
verts = new CustomVertex.\

TransformedColored[3];

verts[0].X=150; verts[0].Y=150;
verts[0].Z=0.5f; verts[0].Rhw=1;
Verts[0].Color =

System.Drawing.Color.Aqua.ToArgb();

verts[1].X=150; verts[1].Y=150;
verts[1].Z=0.5f; verts[1].Rhw=1;
Verts[1].Color =

System.Drawing.Color.Brown.ToArgb();

verts[2].X=150; verts[2].Y=150;
verts[2].Z=0.5f; verts[2].Rhw=1;
Verts[2].Color =

System.Drawing.Color.Blue.ToArgb();

stm.Write(verts);
vb.Unlock();

Figure 2 - A triangle code snippet of DirectX

On December 2002, Microsoft has released the
DirectX 9.0 (Managed) version of the DirectX, which
should meet all the requirements stated at the beginning
of this paper. Thus it is used as a reference for
comparison to reached results. In the following sentences
only its significant graphic namespaces will be shortly
described: Microsoft DirectX, Direct3D and DirectDraw.

The namespace Microsoft.DirectX provides utility
operations and data storage for DirectX application
programming, including exception handling, simple
helper methods, and structures used for matrix, clipping
plane, quaternion, vector manipulation and so forth.
Microsoft.DirectX.Direct3D enables to manipulate
visual models of 3-D objects and take advantage of
hardware acceleration and
Microsoft.DirectX.DirectDraw that provides
functionality across display memory, the hardware

vtkSphereSource
(sphere)

vtkConeSource
(cone)

vtkActor
(sphereActor)

vtkPolyDataMapper
(sphereMapper)

vtkGlyph3D
(glyph)

vtkActor
(spikeActor)

vtkPolyDataMapper
(spikeMapper)

vtkPolyData
(sphere)

vtkPolyData
(cone)

vtkPolyData
(spikes)

vt
kR

en
de

re
r

(r
en

de
re

r)

Figure 4 - The mace visualization pipeline given as graph

blitter, hardware overlay support, and flipping surface
support. It seems that small inconsistency appeared
because Direct Graphics 8.1 should combine both D3D
and DDraw into one, but in the version 9.0 it is formally
divided again.

This is the best solution, which provides a complete
DirectX functionality in the style of .NET Framework.
An example demonstrating DirectX lighting is at the
Figure 3. Advanced information for DirectX .NET
development is available in [5] and [6].

Figure 3 - The Lighting sample

2.3 VTK

The VTK (Visualization Toolkit) is an object-oriented
library aimed at data visualization. As a free source
project it is developed and supported by Kitware Inc. On
the web [7], full version with documentation can be
downloaded. The VTK contains wide variety of
algorithms, exporters, importers, renderers and also
classes for data representation. In contrast to OpenGL
and Direct3D, the VTK is higher-level and more
specialized on the data visualization. E.g. hard to imagine
is to make a fast 3D game engine (as in the case of
Quake) in VTK.

The current version of VTK can be installed on MS
Windows and almost all UNIX based systems. Therefore,
there is a good portability on source code level.
Developers can also select from number of programming

languages to use. C++ is the VTK native language and so
programs developed in this language are the most
efficient. On the other hand, Java, TCL and Python can
be used by means of appropriate wrappers that are part of
the distribution. These wrappers have some limitations
due to differences between C++ and wrapper languages
(C++ is the most general).

The main idea of the VTK is the visualization
pipeline. It means that there are some sources of data,
which are passed into some kind of filter that processes it
and finally the data flows to exporter and/or renderer as
the output. Better view of this idea can be given by the
following example.

The mace example is similar to well known ”Hello
world” application for the VTK. The output is a sphere in
polygonal representation with a cone on each vertex
normal; see Figure 5. It is displayed in renderer with
interactor that allows simple manipulation (rotation,
translation, etc.) of the resulting mace by mouse. The
appropriate visualization pipeline is given as a graph on
Figure 4.

Figure 5 - The mace output

In Figure 4 we can see two sources of polygonal data,
the sphere source and the cone source. Both pass their
data to the vtkGlyph3D that creates copies of the cone on
each vertex of the sphere with orientation of the
appropriate vertex normal. The resulting ”spikes” as
polygonal data and also the sphere data are passed to the
sphere and spike mapper. Mappers are terminal objects
that prepare the data for data for rendering (actually they

have no output). But renderer itself can visualize actors
only. Therefore actors wrap mappers and actors are
passed to the renderer. Fully functional source code in
C# of this example is given on Figure 6.

vtkSphereSource sphere
= vtkSphereSource .New();

sphere .SetThetaResolution(6);
sphere .SetPhiResolution(6);

vtkPolyDataMapper sphereMapper
= vtkPolyDataMapper .New();

sphereMapper .SetInput(sphere .GetOutput());
vtkActor sphereActor = vtkActor .New();
sphereActor .SetMapper(sphereMapper);

vtkConeSource cone = vtkConeSource .New();
cone .SetResolution(6);

vtkGlyph3D glyph = vtkGlyph3D .New();
glyph .SetInput(sphere .GetOutput());
glyph .SetSource(cone .GetOutput());
glyph .SetVectorModeToUseNormal();
glyph .SetScaleModeToScaleByVector();
glyph .SetScaleFactor(0.25f);

vtkPolyDataMapper spikeMapper
= vtkPolyDataMapper .New();

spikeMapper .SetInput(glyph .GetOutput());

vtkActor spik eActor = vtkActor .New();
spikeActor .SetMapper(spikeMapper);

vtkRenderer renderer = vtkRenderer .New();
renderer .AddActor(sphereActor);
renderer .AddActor(spikeActor);
renderer .SetBackground(1,1,1);

vtkRenderWindow renWin
= vtkRenderWindow .New();

renWin .AddRenderer(renderer);
renWin .SetSize(450,450);

vtkRenderWindowInteractor iren
= vtkRenderWindowInteractor .New();

iren .SetRenderWindow(renWin);

// interact with data
renWin .Render();
iren .Start();

Figure 6 - The mace C# source code (VTK)

In Figure 6, first we can see creation of the sphere-
source and its mapping as the sphereMapper. The
sphereMapper.SetInput(sphere.GetOutput()) method call
makes the interconnection between sphere source and
sphere mapper. Appropriate actor (sphereActor) is
created and assigned just behind the mapper. The
creation of cone-source object follows. Its output is
connected as a source input of the glyph. The second
input of the glyph is output from sphere-source. The
spike-mapper maps the output from the glyph with spike-
actor assigned. Finally the renderer with render-window
and interactor are created. The command
renWin.Render(); causes the pipeline execution and
appropriate result is displayed in renderer. The command
iren.Start() contains the event loop handling and
therefore an interaction of user with the renderer is
possible.

Here, we would like to point out the ”lazy execution”.
Until the render command is called, no computation is

executed. When some output is required, the process
object asks its sources if there are any changes in their
state and possibly updates its own state. It passes
recursively through all visualization pipeline elements.

Now we present the triangle example to maintain the
integrity with other parts of this article. As we mentioned
before, the VTK is higher-level library than OpenGL or
Direct3D. On the other hand, it is an interesting
comparison between such different approaches that solve
the same problem. The main part of the source code in
C# can be seen in Figure 7. Only the renderer and actor
creation is omitted.

vtkPoints vertices = vtkPoints.New();
vertices.SetNumberOfPoints(3);
vertices.SetPoint(0, 0.0, 0.0, 0.0);
vertices.SetPoint(1, 1.0, 0.0, 0.0);
vertices.SetPoint(2, 1.0, 1.0, 0.0);

vtkTriangle triangle = vtkTriangle.New();
triangle.GetPointIds().SetId(0, 0);
triangle.GetPointIds().SetId(1, 1);
triangle.GetPointIds().SetId(2, 2);

vtkPolyData polyData = vtkPolyData.New();
polyData.SetPoints(vertices);
polyData.Allocate(1, 1);
polyData.InsertNextCell(

triangle.GetCellType(),
triangle.GetPointIds());

vtkPolyDataMapper mapper =
vtkPolyDataMapper.New();

mapper.SetInput(polyData);

Figure 7 - The triangle C# source code (VTK)

First there is a creation of a vertex array with
definition of coordinates called vertices. The triangle
object itself is actually array of indices to the vertices
array. The creation of the triangle is just after the vertices
creation. Next the polygonal data are created and vertices
with the triangle indices are passed into the object.
Finally these polygonal data are mapped to the mapper
that can be processed as mappers in previously presented
example.

The triangle object is only one from a set of possible
polygonal data elements. Actually it can be any correctly
derived class from vtkCell class. But detailed description
of the data representation in VTK is beyond the scope of
this article.

3 Implementation and Approach
This section contains description of our approach for
graphical interfaces mentioned in previous section. One
of the possible approaches for porting a library to .NET
is the use of wrappers. To use a wrapper or to wrap a
library means to create a set of functions (or objects) that
shall make interface accessible from particular
environment. These functions usually perform system
dependent task and call a wrapped function (i.e.,
particular function of the original library).

3.1 OpenGL

This subsection contains description of the OpenGL
approach. First, an existing solution (CsGL) is described
to show current state of the art. Next is our approach and
its advantages and disadvantages. At the end of this
subsection a short example of source code is included.

OpenGL library has currently an existing solution for
.NET environment. It is called CsGL [8], it is an Open
Source library. First version of CsGL library was
released at August 14, 2001.

It is a wrapper of an interface and is implemented in
C and C#. The C source code provides connectivity to
underlying GUI and C# code provides OpenGL/GLU
functionality.

It uses PInvoke mechanism – i.e. .NET environment
handles data sharing and function calling between itself
and outside world. The only things, which need to be
specified, are function headers.

As it is notified in documentation, this combination
of languages should simplify porting to another platform.

OpenGL/GLU functions and constants are static
members of one class. This approach is based on the fact
that a recommended use of CsGL is via inheritance. It
means that user has to inherit his own classes from CsGL
class to gain full access to all OpenGL functions. Ported
OpenGL code then looks quite the same as it would be in
plain C.

Currently CsGL has full implementation of OpenGL
up to version 1.4, a complete GLU and approximately 50
GL Extensions including tool for their porting.

The main goal of our implementation is the same as
for CsGL: to create an OpenGL library wrapper.
However, unlike CsGL, there is an aim on programming
safety. To achieve it, parameter checking will be added
inside the wrapper. This will prevent user from passing
invalid data structures or arrays (e.g. arrays of wrong
length).

Next, our implementation will avoid use of IntPtr
data type that has quite the same meaning as void pointer
in non-managed environment. This will prevent user
from passing data structures or arrays of invalid data type
(e.g., passing an array of references instead of an array of
doubles or integers).

Next, enumeration data types (the enums) will replace
constants. This will prevent user from passing invalid
constants without need of additional code inside
functions wrappers. Also it will increase a comfort of the
interface because it is a little self-documenting: the user
does not need to exactly know, which constant is needed,
because he have to choose only from a group of the
constant specified by the function parameter data type.

An important aim of our interface implementation is
to provide full comfort of managed environment. The
result will be interface where using it does not need any
knowledge about managed and non-managed
environment cooperation.

This comfort will be achieved by completely
avoiding IntPtr data type, by using enums instead of
constants and by adding additional data structures. These
additional structures will serve as a replacement of non-
managed code capability to look on one block of a
memory with different views.

Next important goal of the implementation is to make
the slowdown (due to wrapping) as low as possible
because the features described above (e.g., parameter
checking) lead to additional code inside the wrapper.

Everything that was described above will create an
interface of OpenGL/GLU library, which is comfortable,
has high programming safety (especially for non-
experienced users) and is as close to the original
OpenGL/GLU specification as possible.

Let us describe briefly the most important
difficulties of creating implementation described above.
The major difficulty is data sharing. Sharing data
between managed and unmanaged code means to pass
non-managed pointer to a memory block outside the
managed environment, and a problem can happen, when
the garbage collector removes or moves with the
referenced block of memory. After that, the passed
pointer becomes invalid and operations with memory
using such pointer can result in an application crash.

Next difficulty is due to void pointer. In this case it is
also a matter of programming safety and a replacement
needs additional helpful data structures.

Implementation is performed in C++ Managed
Extensions (MC++), which provide better cooperation
among non-managed, managed code and them.

Implementation follows goals and solves difficulties
described above. The structure of the interface
implementation is designed to fulfill the described goals.
Also possibility for users to use only that version of
OpenGL/GLU that is sufficient for his/her needs
influenced the design.

The result contains four groups of classes, which
provide:
• Underlying GUI and OpenGL library connectivity.
• OpenGL/GLU functions. Each version is placed into

a separate class that is inherited from the previous
version.

• Internal data structures. These classes are internal and
therefore transparent for a user. They are the only
one, which need to be modified when adding a new
version of OpenGL/GLU interface.

• Other helpful classes and data structures.
The most important ones are classes containing

OpenGL/GLU functions. These classes inherit from
classes of previous OpenGL/GLU versions to maintain
backward version compatibility. These classes contain
two sets of functions (constants), which differ only by
their names.

First one is similar to original OpenGL interface;
second one is the modified. This modification is based on
removal of 'gl' (functions) and 'GL_' (constants) prefix to

give the source code better look as it is shown in
examples (see Figure 8).

glClearColor(, , ,);
glClear(GL_COLOR_BUFFER_BIT);
glColor3d(, ,);
glBegin(GL_TRIANGLES);
glVertex3d(, ,);
glVertex3d(, ,);
glVertex3d(, ,);
glEnd();
glFlush();

0 0 0 0

1 1 1

-1.0 -1.0 0.0
0.0 1.0 0.0
1.0 -1.0 0.0

gl.glClearColor(, , ,);
gl.glClear(GL.GL_COLOR_BUFFER_BIT);
gl.glColor3d(, ,);
gl.glBegin(GL.GL_TRIANGLES);
gl.glVertex3d(, ,);
gl.glVertex3d(, ,);
gl.glVertex3d(,);
gl.glEnd();
gl.glFlush();

0 0 0 0

1 1 1

-1.0 -1.0 0.0
0.0 1.0 0.0
1.0 -1.0 0.0,

GL.glClearColor(, , ,);
GL.glClear(GL.GL_COLOR_BUFFER_BIT);
GL.glColor3d(, ,);
GL.glBegin(GL.GL_TRIANGLES);
GL.glVertex3d(, ,);
GL.glVertex3d(, ,);
GL.glVertex3d(, ,);
GL.glEnd();
GL.glFlush();

0 0 0 0

1 1 1

-1.0 -1.0 0.0
0.0 1.0 0.0
1.0 -1.0 0.0

gl.ClearColor(, , ,);
gl.Clear(GL.COLOR_BUFFER_BIT);
gl.Color3d(, ,);
gl.Begin(GL.TRIANGLES);
gl.Vertex3d(, ,);
gl.Vertex3d(, ,);
gl.Vertex3d(, ,);
gl.End();
gl.Flush();

0 0 0 0

1 1 1

-1.0 -1.0 0.0
0.0 1.0 0.0
1.0 -1.0 0.0

A

B

C

D

Figure 8 - Source code example.

The code in the example above does exactly the same
as code in Figure 1. It shall provide a possibility to
compare original C code (also CsGL code using
inheritance) (A), CsGL code without use of inheritance
(B), our implementation using first set of names (C), and
the same with the second set of names (D). The gl
variable contains reference to an instance of GL class.

Recommended use of the interface is via
composition. Functions are not static members of the
class so there is a need to create class instance in order to
use OpenGL/GLU functions.

It is possible to use inheritance, but it is not possible
to gain both OpenGL and GLU functionality (constants)
by using this approach because of managed environment
allows only one parent per class.

Currently there is a full implementation of OpenGL
and GLU version 1.1. Higher versions and
GL Extensions will be implemented using a generator,
which is under development. This generator will provide
possibility to automate the task of porting of new GL
Extensions and new OpenGL versions.

3.2 DirectX

The runtime of .NET Framework has some features, such
as memory management, based on garbage collector

(GC). It automatically controls the lifetime of existing
objects, their location in memory to prevent
fragmentation and removes them from memory since
there is no reference to them. A code written for this
managed environment can be called safe code and no
pointers are allowed. Having a reference to an object, GC
can shift the object in memory and the reference is still
pointing to it. But once the pointer is initialized to some
address, GC must keep away from the object lying there
to avoid its possible shifting and invalidating the pointer.
To switch to this unmanaged mode, where pointers are
used, the unsafe code has to be used.

To pass data into DirectX methods, pointers should
be necessary as well as the unmanaged mode. But the
managed one is preferred.

Wrapping task can be defined as a process when
migrating some functionality from foreign development
environment into ours without changes at the original
source code. In the other words, it can be also named as
porting as in [9]. To create a port of some dynamically
linked library (.dll) means to somehow provide headers
of all necessary functions and to do all the necessary
steps for the .dll import. But having the original
functionality in a COM, it is simple to let the .NET
Framework runtime to do everything automatically. The
runtime has methods for handling components written in
an unmanaged mode and its basic idea is described in the
next paragraph.

The advantage that DirectX is a COM based is
highly welcome. The .NET Framework runtime
environment can save a lot of work to developer in a
wrapping task because of its runtime callable wrappers
feature. The functionality of GC can be used although the
pointers are needed as well. Each time the method of a
COM is called, the runtime callable wrapper (RCW) is
automatically created for accessing the unmanaged code
of that COM. It is created every time that the call occurs.
This could seem to be unacceptably high overhead cost,
but, if considering the fact that for e.g. rendering 10 or 10
billions facets takes only one call and one RCW build, it
is feasible.

All that developer has to do is a COM interfaces
registration. Therefore the problem of wrapping is not
as difficult as in [9] and it is not necessary to deal with
some specific problems. In the following paragraphs,
important procedures of how to do it will be described.

COM coclasses is the first general approach that uses
the COM interoperability. Essentials about COM
interoperability can be found in [10]. At first, a list of all
component interfaces is taken and for each interface is
done registration as in the Figure 9.

using System;
using System.Runtime.InteropServices;

namespace Sample {

[ComImport,
Guid("3BBA0080-2421-11CF-A31A-\

00AA00B93356")]

class IDirect3D {}

class Test {
static void oldMain() {

//Create a COM object wrapper..
IDirect3D iDirect3D =
new IDirect3D();

}
}
...

Figure 9 - COM registration

Immediately after a declaration, the COM object is
ready for initialization and use. Instantiating an interface
instance causes a corresponding COM instantiation and
all its methods are called via the interface reference. The
list of necessary GUIDs (Globally Unique IDentifiers)
can be retrieved from header files of DirectX SDK,
downloadable from [2].

This is the most general way of obtaining DirectX
functionality in the sense that only necessary parts of the
interface are included. Another significant reason for this
strategy can be higher level of freedom while mixing
components from several versions. However, it is not
possible to combine different versions of one component,
but it is possible to mix different components, each one
from only one version. If, for some reason, a developer
needs graphical capabilities of Direct3D version 9.0 and
sound from DirectX 6.0, the instructions given above
will help him to solve this task efficiently.

Compared to previous approach, a type library
(DxVbLib) solution gives a complete functionality of
DirectX by a single command. All to do here is to add a
reference to Visual Basic DirectX Type Library named
DxVBLib.dll and since it is done, the whole functionality
is available through instantiating the needed objects and
their references.

In the following example (Figure 10) it is shown on
creating a Direct3D8 object that supports enumeration
and allows the creation of Direct3DDevice8 objects.

using DxVBLib;
// also add manually a ref.
//in options

namespace Sample {
...
public class MyClass {

...
private Direct3D8 g_pD3D;
...
g_pD3D =

this.DirectX.Direct3DCreate8(
D3D_SDK_VERSION);

...
}
...
}

Figure 10 - snippet for type library use

Until the version DirectX 9.0 was released, this was
the simplest method how to implement DirectX in .NET
Framework.

3.3 VTK

Our main goal with VTK is to allow the user its
straightforward use in the managed (.NET) environment
together with programming safety and comfort of the
managed environment. It is necessary to make the
unmanaged (Win32) classes accessible from the
managed environment and to provide correct data type
conversions between these two different worlds. As a
reasonable solution the interfacing layer between
managed application and unmanaged libraries seems.
Simply said, the application uses the interface and the
interface passes its request (with appropriate data
conversions) to the unmanaged libraries. A possible
application scheme is given in Figure 11.

Hardware

Windows

VTK (Win32) .NET Framework

vtkDotNetWrap

Application
(Win32
part)

Application (.NET part)

Application

Figure 11 – A possible scheme of a VTK application
in .NET environment

In the following paragraphs we present a short
overview how the interface is created. The knowledge of
that could be good for more efficient use of the interface.

To make unmanaged classes accessible from the
managed environment, it is necessary to make managed
wrap-class for each unmanaged class we want to access.
The managed wrap-class contains an appropriate instance
of unmanaged class. Its methods call methods of the
unmanaged class. See a simplified part of wrap-class
source code in Figure 12.

public __gc class vtkAbstractMapper :
public vtkProcessObject // wrap-class
{

// wrapped-class
::vtkAbstractMapper *w;

// wrapped method
System::String * GetClassName()
{

return new System::String(
w->GetClassName());

}

Figure 12 - Simplified MC++ wrap-class source code

Each wrap-class is written in C++ Managed
Extension (MC++). The MC++ is extended C++ to allow
programmer use the new features of managed
environment. The keyword __gc is typical. It marks the
class as garbage-collected. In the simplest meaning,
delete operator need not be called. Things are much more
complicated than this but as the first overview it should
be enough.

The generator or another process that automates
wrap-class creation has to be used due to the VTK size
(Approximately 700 classes with 16000 public and
protected class members).

We divided the process of generating into two parts,
parsing and generating. The parsing gets appropriate
information about VTK classes from its C++ header files.
The generator uses the information from the parser and
generates wrap-classes source codes.

4 Results

4.1 OpenGL

OpenGL interface implementation is currently in the
state of testing and further development. It has been
tested on a simple function to test the interface
functionality.

We expected a slowdown due to the method that was
used to create the port of the interface library, i.e.
wrappers. But not only because of that, also due to the
fact that the wrapper contains an additional code to
improve the programming safety.

To prove our expectation, we performed three tests.
These tests measure slowdown of the CsGL and our
implementation, relatively to the original OpenGL
library (i.e., common OpenGL Win32 application).

The first test was calling a function glVertex2d. This
is an example of the function with value data types as
parameters only. We expected such functions to be called
most often. As you can see at Figure 13, our
implementation is a little bit faster then CsGL and the
slowdown is a very small.

1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

1000.00 10000.00 100000.00

log(No. of calls)

S
lo

w
do

w
n

CsGL

Our implementation

Figure 13 - Results of the glVertex2d test

The second test deals with functions that have an
array type as a parameter and such passed array is not
stored inside the OpenGL. For this test the function
glTexImage2D was used. Again, it is compared to
original OpenGL library.

As you can see at Figure 14, slowdown of our
implementation is higher then CsGL. This slowdown is
caused by the parameter checking because without it the
results are close to CsGL.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

1000.00 10000.00 100000.00
log(No. of calls)

S
lo

w
do

w
n

CsGL
Our implementation
Our implementation (no param check)

Figure 14 - Results of the glTexImage2d test

The third test was aimed at a function with an array
type as a parameter that is stored inside OpenGL library
in the form of pointer for a future use. An example of
such a functions is glVertexPointer.

As you can see at Figure 15, the slowdown is quite
significant even for a version without parameter
checking. This is caused by the fact that our
implementation uses generic collections for storing
internal data.

1.00

6.00

11.00

16.00

21.00

26.00

31.00

36.00

41.00

46.00

51.00

1000.00 10000.00 100000.00
log(No. of calls)

S
lo

w
do

w
n

CsGL
Our implementation
Our implementation (no param check)

Figure 15 - Results of the glVertexPointer test

However, the functions of such kind are not called, in
comparison with the previous ones, too often. Due to
this, the future whole code should not be so significantly
slow.

Unlike the CsGL code, using our implementation
does not need unsafe code blocks. Application without
unsafe code blocks is considered from a viewpoint of
.NET to be more secure. The absence of unsafe blocks
also increases programming comfort (i.e., no pointers). In
C# language this means that only references to objects
are needed.

4.2 DirectX

To provide some information about speed performance,
sample codes of original DirectX8.1b in C++ have been
compared to our modified DirectX9.0 .NET Framework
version. The machine configuration was as follows: two
Intel Pentium III / 500MHz, 1GB ECC SDRAM,
Diamond Fire GL1 Video Accelerator PCI, OS
Windows2000, 400×300×32 window mode.

The method of measurement was determining the
number of rendered frames per second. Then, from the

average for each test, we calculated the time in
milliseconds with precision provided by the number of
decimal digits; see results in Table 1.

Sample type C# .NET C++
Billboarding 27,9 23,2
Clipping 10,3 9,4
Vertex shader 15,6 14,0

Enhanced mesh 9,1 6,6
Lights 17,0 23,4

Vertex shader 7,2 6,3

Table 1 - Time [ms] to render the tested scene

Plotted to Figure 16, it is obvious that overhead of C#
is acceptable in most cases with as with the exception of
the billboarding and enhanced mesh tests, where the
results point, to better C++ compiler. It was surprising
that DirectX in C# was faster at the lighting test.

During the tests even some MS SDK samples
crashed. In future work, we want to discover why some
errors occurred, e.g. presenting error exceptions,
immediate quitting, machine deadlocks (without any
notice), and some automatic machine reboots. Finally,
about 60% of samples worked well.

4.3 VTK

The result of our work on VTK is one interfacing
managed assembly (dll) that can be easily added to any
managed (C#, etc.) project. This interfacing assembly
calls the original VTK libraries. As we mentioned before,
the presented interface provides only a subset of the VTK
functionality as any other interfaces to other environment
and/or programming languages.

Figure 16 - Time [ms] to render scene.

We already tested the presented interface on a part of
testing samples that are part of the VTK distribution and
no serious troubles have been encountered.

Currently large testing process is in progress. With 15
colleagues, we are preparing a set of examples from all
main parts of VTK application. It is a practical work in
one of the courses supervised by the Center of Computer
Graphics and Data Visualization on the University of
West Bohemia in Plzeň, Czech Republic.

It is clear the added interfacing layer produces some
slowdown in the application run. Here we present results
of the slowdown measuring. There is comparison
between the managed application in C# that uses our
interface and the unmanaged application in C++ that
calls the VTK libraries directly. Absolute times are given
in Table 2.

Program Time C# [s] Time C++ [s]
Mace 0.29 0.31
FrustrumClip 0.54 0.38
ExpCos 2.96 2.28
PointLocator 0.59 0.30
Rgrid 0.34 0.34
IFlamigm 0.65 0.94
VolProt 6.48 7.27

Table 2 - Slowdown measuring between managed C#
and native C++

As we can see, the slowdown is about 20%. In our
opinion it is not crucial because in the VTK we are
hunting the developing speed and easiness, not the
execution speed.

The tested samples are usually taken from the VTK
source codes and manuals. The first one is the same mace
as the one presented in the section 2.3. The FrustrumClip
is a kind of 3D clipping. The ExpCos example is a
300x300 grid waved by the ”Mexican-hat” function. The
PointLocator is a kind of the 3D nearest-neighbor search.
The RGrid is ”manually” created regular grid displayed
as a lines. Test of 3DS file importing and rendering
provide the IFlamigm example. Finally, the VolProt tests
wide variety of direct volume rendering in one window.
The graphical outputs can be seen in Figure 17.

Figure 17 - Testing examples: FrustrumClip, ExpCos,
PointLocator, RGrid, IFlamigm, VolProt

As any other VTK interfaces, also the presented one
does not provide a straightforward inheritance
possibility. So the user cannot simply derive his own
class from any VTK class in .NET environment. For the
user it means he can only use already created VTK
modules and cannot create his own modules. Finally we
would like to point out that (as far as we know) it is
possible in unmanaged C++ only.

As a future work we would like to finish the testing
process with students. We are considering to allow the
user to make his own functional VTK objects in managed
environment by means of two-level wrapping. Full
description of the problem can be found in our paper [9].

5 Conclusion
Our goal is not to mutually compare interfaces to tell
which one is the best. What we want to achieve is to
create ports of the presented libraries to .NET
environment or to try a little bit different approach than
existing ones (as for OpenGL).

The aim of our work is programming safety and
comfort of the use of the ported interfaces. We want to
make our ported interface to have pure .NET look, i.e. to
avoid using of unmanaged blocks of code in order to
communicate with the interface.

The future work, as it was mentioned in previous
sections, is aimed at improving functionality, stability
and safety of implementations. Currently our
implementations are in state of testing and further
improving functionality. They are already usable, but
shall not be considered to be completely error-proof yet.

Presented works are our diploma thesis. Release
versions are expected at the beginning of June. All the
presented project will be published as OpenSource
because it is a part of the ROTOR project [12].

Acknowledgements
This work is a part of Microsoft Research Ltd. (U.K.):
ROTOR project [12] and was supported by the Ministry
of Education of The Czech Republic – Project MSM
235200005.

We also wish to thank doc. Ivana Kolingerová for
advises and emendation.

References
[1] Schreder, W., Martin, K., Lorensen, B.: The

Visualiasation Toolkit. Prentice Hall, New Jersey,
1998.

[2] Kačmář, D.: Programujeme .NET aplikace. (in
Czech) Computer Press, Praha, 2001.

[3] SGI: OpenGL 1.3 specification.
http://www.opengl.org/

[4] Smlsal, T., Skala, V.: DirectX in C#. In C# and
.NET Technologies 2003 proceedings, UNION
Agency, Science Press, Plzeň, 2003.

[5] C# Corner.
http://www.c-sharpcorner.com/Directx.asp

[6] Visual Studio .NET Documentation.
http://msdn.microsoft.com/library/default.asp?url=/l
ibrary/en-us/vsintro7/html/vsstartpage.asp

[7] Home pages of VTK.
http://www.kitware.com/vtk/

[8] CsGL project documentation.
http://csgl.sourceforge.net/

[9] Hanák, I., Frank, M., Skala, V.: OpenGL and VTK
interface for .NET. In C# and .NET
Technologies 2003 proceedings, UNION Agency,
Science Press, Plzeň, 2003.

[10] Microsoft COM Technologies.
http://www.microsoft.com/com/

[11] MSDN (electronic resources).
http://msdn.microsoft.com/library/

[12] Centre of Computer Graphics and Data
Visualisation.
http://herakles.zcu.cz/research.php

