
Preprocessing
virtual worlds

for virtual reality applications

István Zsolt, Lazányi
(ilazanyi@freemail.hu)

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics, Budapest / Hungary

Abstract
Because of the real-time requirements, the complexity of
the models in a virtual reality application is limited. In
our work we applied a preprocessing phase to increase
the fidelity of the virtual world while meeting these
requirements.

First we focused on the simplification of complex
polygon meshes. We found an easy-to-use method to
reduce the number of polygons in the model without
significant loss in visual accuracy. The polygon
reduction algorithm performed so called “edge collapse”
operations that removed edges from the model. In our
work we compared two simple edge collapsing
strategies. During the simplification several variants of
different complexity were generated from the same
model. During rendering the most suitable variant was
chosen using Level of Detail switching technique.

Another focus area of our work was to create realistic
light conditions in a virtual world. Although global
illumination algorithms generate physically correct light
conditions they cannot be applied in a real-time
application because of their excessive time consumption.
In our work we used textures to map light conditions
onto the surfaces. We calculated light conditions in a
preprocessing phase using a global illumination
algorithm and then we saved the result as textures and we
mapped them onto the corresponding surfaces.

Keywords: virtual reality applications, polygon mesh
simplification, realistic light conditions, global
illumination, textures

1 Introduction

1.1 VR in education
Since there is no health risk when fighting a virtual air
battle in a flight simulator or exploring a virtual nuclear
power plant in an industrial application (Figure 1), virtual
reality (VR) applications became widely used for
educational purposes. The aim of these VR applications

is to provide employees with a daily routine that is
essential for their safety, and to train them how to act in
an emergency situation.

1. Figure – Exploring a nuclear power plant

In a nuclear power plant, because of the radiation
exposure, workers may not perform their activities at an
arbitrary place and for an arbitrary duration. Using a VR
simulator, workers can get acquainted with the complex
of the plant without any risk. They can walk through the
halls of the plant (as seen on Figure 1), while the
radiation level of their environment may be displayed
with different colors on the floor. So workers can make
an attempt to minimize the radiation dose through
avoiding high-radiation areas and following an optimal
path during their activity.

1.2 VR requirements
To deceive the user‘s senses in a VR simulator is a rather
complex task. A basic requirement is the synchronous
operation of the different devices. Any inaccuracy will
result in dramatic decrease in realism. For example, if
computing time increases because of a realistic, large
polygon model, the simulator will only be able to
respond to the user interaction with a significant delay. If
the user turns his/her head to the side, the view appearing
on the display of the VR-helmet will only follow this
movement with a delay that maybe cannot be noticed

directly, but may result in the fatigue and dizziness of the
user. This phenomenon is called the “simulator disease”.

Because of the possibility of the simulator disease
effective visualization algorithms are needed that meet
both real-time requirements and increasing user
demands. Our goal was to increase the fidelity of the
virtual models while keeping real-time requirements. The
two focus areas we dealt with were mesh simplification
techniques and realistic light conditions using textures.

2 Mesh simplification techniques
We were looking for an easy-to-implement method
which was able to reduce the number of polygons in the
model without significant loss in visual accuracy. Firstly,
two existing mesh storage techniques will be described:
Level of Detail switching and progressive meshes.

2.1 Mesh storage techniques
Level of Detail (LOD) switching is the simplest

solution to the problem of mesh complexity. In this
approach different variants of the same model are created
and they are stored independently (see Figure 2). These
variants are prepared in an off-line preprocessing phase.
Because of the limits in storage capacity only a few
(e.g. three) variants can be used. At every moment of the
rendering, the most adequate variant is chosen. That
means we choose the less complex variant that produces
an image quality “good enough”. When zooming in to an
object, switching between the different variants may
cause rough visual transitions called “popping effect”.

2. Figure – Different LOD variants of a torch

Progressive meshes (PM) represent a more
sophisticated storage technique (see [1], [4]). Unlike
LOD switching (where the variants are stored
independently), a progressive mesh is stored in a form of
a coarse base mesh and a sequence of detail records.
These records are used to refine the base mesh into the
original mesh. During rendering, the most adequate
variant of the model is constructed by applying the detail
records one after another to the base mesh until the
resulting mesh becomes “good enough”.

Although progressive meshes represent an excellent
and natural approach to the problem of level of detail,
they need some extra data structures and processing time
during rendering. On the other hand, LOD switching can

easily be implemented even in a single VRML file
(VRML supports a node called “LOD”, see [2]). That is
why we preferred LOD switching when choosing a
storage technique.

2.2 Generating mesh variants
To generate the different mesh variants an operation

called edge collapse is used. This operation removes an
edge and two adjacent faces from the model (see Figure
3). The edge will be replaced with a single vertex. If we
apply the edge collapse operation several times to the
original mesh we will get ever coarser meshes.

3. Figure – The edge collapse operation removes an
edge from the model

In each step a criterion is used to choose the most
“adequate” edge to collapse. In our implementation we
used a so-called local criterion. Local criteria consider
only the actual mesh before performing an edge collapse
operation on it. They “forget” the original mesh so there
is no guarantee that the resulting base mesh will even be
similar to the original one. (Moreover, a continuous mesh
will probably break up, as you may see in the appendix.)
In return, this algorithm is much faster than the
algorithms based on global criteria that “remember” the
original mesh.

First we performed the edge collapse operations using
the following simple formula (see Formula 1). The
meaning of the symbols is as follows: e is the actual
edge; f1 and f2 are its neighbor faces.

f2f1 nn
1e

normals face theofproduct dot
edge theoflength cost(e)

⋅
⋅==

1. Formula – a simple local criterion

According to the formula, a longer edge will have a
higher cost than a shorter one, because of the bigger
nominator. Similarly, larger “crack” along the edge
means larger difference in the face normals, resulting in
smaller dot products that imply smaller denominator and
higher cost. For example, when the angle between the
face normals is a right angle, then the denominator
becomes zero and the cost becomes infinite (see Fig. 4).

0

5

10

15

20

0 30 60 90 120 150 180
angle
(°)

cost

4. Figure – How cost depends on the angle between
the two adjacent faces

A problem with Formula 1 is that it is “short-
sighted”. It only takes into account those two faces that
are adjacent to the edge under examination. The
neighbors of these two faces are not considered. In order
to show the importance of this issue let us take a cube
and one of its diagonals (shown with an arrow on Figure
5)! The normals of the adjacent faces are parallel, so the
nominator is 1, which is its largest possible value, so the
cost is minimal. That means this operation will be
performed as one of the very first edge collapses,
although it causes a considerable change in the mesh
topology (see the right side of Figure 5).

5. Figure – A cube before and after an edge collapse
operation

In order to avoid the aforementioned problem and to
improve the quality of the result, a more sophisticated
formula is needed. An easy-to-use formula was found in
the article of Melax ([3]) (see Formula 2):















⋅=

∈ 2
.nn-1,

2
.nn-1min max e cost(e) f2ff1f

Ff

2. Formula – a more sophisticated local criterion

The meaning of the symbols is as follows (see Figure
6 for the notation): e is the edge being examined; u and v
are its end points. Faces f1 and f2 are the neighbors of the
edge e. The set F represents the faces that are adjacent to
vertex u, but not adjacent to vertex v. Let us call them
“semi-adjacent” to the edge e.

6. Figure - Notation used in Formula 2

As we can see, this formula is asymmetric, since it
describes the cost of collapsing vertex u into vertex v. To
calculate the opposite direction (collapsing v into u), we
have to repeat the calculations with a different F set of
faces.

Unlike the previous one, this formula does take care
of the neighborhood of the disappearing vertex (u).
Namely, from this neighborhood the “most expensive”
face is considered.

Let us consider an adjacent face (f1 or f2) and a semi-
adjacent face (i.e. from the set f)! The cost they define
depends on the angle between their normals as shown on
Figure 8.

0

0,5

1

0 30 60 90 120 150 180
angle

cost

7. Figure – How cost depends on the angle between an
“adjacent” and a “semi-adjacent” face

On a flat surface, for example, the angle between the
normals of the aforementioned faces is zero, that means
their dot product is 1, resulting in a minimal cost of 0.

On a cube, if we consider one of its diagonals (see
Figure 5 again), the angle between the adjacent and semi-
adjacent faces is a right angle, resulting in a cost of 0.5.
This high cost will delay the collapse of this edge until
there are no other edges with a lower cost.

2.3 Implementation
After discussing the principles of mesh simplification
techniques, here follows a detailed explanation of our
implementation. The application was implemented in
Java. It receives a polygon model in an input VRML file,
generates different levels of detail using Java3D, and
then saves them as VRML output files.

In order to import the initial VRML file into Java3D,
we used the class VRML97Loader of the package
org.web3d.j3d.loaders. This class loaded the content of
the VRML file and transformed it into a Java3D scene
graph (about Java3D and scene graphs see [7], [8] and
[9]).

During the importation of the VRML file, shapes
were automatically tessellated into triangles and
rectangles. But face indexes and vertex indexes were lost
during the loading, resulting in a set of "independent"

faces, and only containing the topological information
implicitly.

After loading the model we had to recover this
topological information (Figure 8) by separating vertex
information and face information from each other. We
took polygons one after another and examined their
vertices. New vertices were inserted into a vertex list.
Vertices found in the vertex list were referenced further
on with their indices.

8. Figure – Recovering topological information

After recovering explicit topological information we
were ready to perform edge collapse operations. In each
step, the edge with minimal cost was eliminated. The
resulting mesh is periodically saved into separate files
that will be at last composed into a single VRML file
using the LOD node. So switching between the different
representations is made automatically by the VRML
browser.

In order to make edge collapses visible during the
simplification process, faces of the model were displayed
in a specific way. Three different shades of grey were
specified and these colors were bound to the vertices of
each triangle in a random order, as seen on the Figure 5.
So, in most cases, adjacent faces received different colors
along their common edges, making edges easy to
observe. In order to ease the examination of the model
arbitrary rotation of the model was allowed.

In order to facilitate the simplification of large
polygon models, so-called interaction points were
introduced. Instead of displaying (and saving) the result
after each simplification step, the result was only
displayed and saved at the interaction points. The number
of simplification steps between two interaction points
was defined by the user. For example, if a step of 1000
was given, files containing …, 3000, 2000, 1000
polygons were created.

The application can be used for demonstration
purposes, as well. In this case, the program stops at each
interaction point, highlights the next edge to be collapsed
and waits for a mouse click. In order to reduce the
number of clicks when the number of the polygons is
large, a threshold can be specified, and a mouse click is
only needed at an interaction point if the number of
polygons is less than the given threshold.

3 Realistic light conditions using
textures

When using a VR application, light conditions are
expected to be similar to those in the real physical world.
But in a real physical environment light conditions
depend not only on the light sources that illuminate the
object directly, but on the lights reflected from all other

objects, too. Because of this coupling between the
objects, the time consumption of the global illumination
algorithms (that are able to calculate physically correct
light conditions) is extremely high, so there is not enough
computing capacity to apply global illumination in VR
applications.

One possible solution to the problem is the
application of an off-line preprocessing phase. During
this phase, light conditions could be calculated and the
result could be mapped onto the surfaces in a form of
textures. Since these textures are static (they act like
wallpaper), they are not suitable for specular materials,
such as a mirror. More precisely, since the light
conditions that are mapped onto the surfaces do not
depend on the viewer’s position, they can only be applied
in case of diffuse lightning, e.g. a whitewashed wall. In
case of specular lightning, light conditions cannot be
“glued” on the surface.

3.1 RenderX – a global illumination
software

We applied “RenderX” global illumination software to
calculate the light conditions ([5], [6]). The RenderX
software opens a VRML file, calculates the light
conditions using various methods for global illumination,
and saves the resulting light conditions into an XML file
in the form of RGB values.

In order to increase image quality, RenderX
tessellates large triangles into smaller ones before
running the global illumination algorithm. The XML
output file will contain RGB information for each small
triangle called “patch”.

3.2 Implementation
We developed an application that read the XML file

and loaded RGB values of the patches into an internal
data structure. The next step was to identify the patches
that originate from the same triangle. In order to reduce
the amount of computing, all patches lying in the plane
of the given triangle were selected. Using a simple
coordinate transformation, these patches were
transformed to be facing to the camera and they were
scaled to fit into the window. In this moment the patches
were ready to make a “snapshot” of them. Using Java3D
raster operations, a rectangular window of the screen was
read and saved into an image file. After computing the
coordinates of the vertices in the texture space we could
map the texture onto the original mesh.

The RenderX output contains a single RGB value for
each patch. When using only one color per patch for
drawing, edges between patches become visible. To
avoid this, we derived a color value for each vertex.
(That means we will be able to draw a patch using three
RGB values.) The color of each vertex was composed by
using the color of the adjacent patches. Each patch color
was weighted with the angle belonging to the patch at the
examined vertex.

4 Results

4.1 Mesh simplification
It is an important issue whether the algorithms are

able to preserve sharp “cracks” on the surface called
discontinuities. In order to test the aforementioned
formulas we created an ellipsoidal shape with a
cylindrical hole in it (see the left side of Figure 9). When
we reduced the shape with first formula, the algorithm
was unable to preserve the discontinuity around the hole
(see the right side of Figure 9).

9. Figure – An ellipsoidal shape reduced with the first
formula (452 and 200 faces)

Despite its simplicity and locality the second formula
produced surprisingly faithful results. It was able to
preserve the discontinuities of the model as shown on
Figure 10.

10. Figure – The same shape reduced with the second
formula (452 and 200 faces)

The problem with both formulas is that each formula
consists of two factors, “length” and “smoothness”.
These factors are coequal so they are able to compensate
each other. For example an edge representing a sharp
discontinuity may have a low cost when the edge is short
enough. So a discontinuity on the surface may disappear
during the simplification if it consists of short edges.

Remark. More examples for mesh simplification can
be found in the appendix.

4.2 Lightmaps
In order to demonstrate the results after processing the
RenderX output, the following VRML scene was chosen
(see Figure 11):

11. Figure – A simple VRML scene displayed by a
VRML browser

There are two light sources in the VRML world (the
VRML browser did not display them). We loaded the
model into RenderX and we got a snapshot of the virtual
world as shown on Figure 12. Due to the physically
correct calculations light sources and shadows became
visible.

12. Figure – The output of the global illumination
algorithm

Using our application we can extract the light
conditions on the wall behind the stairs (Figure 13).
Using the aforementioned trick we can produce three
RGB values for each triangle (Figure 14).

13. Figure – Texture generated from the RenderX
output (wall behind the stairs)

14. Figure – Smooth version of the same texture

Another possible applications of lightmaps:

15. Figure – Textured pipes in an industrial
application

5 Conclusion and future work
On the previous pages we provided an overview of the
methods that can be used in a VR simulator to enhance
reality without radical increase of computing work. Both
mesh simplification and lightmaps were tested with
simple models and produced adequate results.

In the future, a more user-friendly mesh
simplification application could be developed and it
could be used as a demonstrating tool. It would be nice to
make a comparison between different local and global
edge collapse strategies.

Interesting light effects could be achieved with the
use of more than one texture per face. For example,
depending on the viewer’s position, different textures
could be used.

Acknowledgements
We would like to say thank you to our supervisor

László Szirmay–Kalos for his continuous help and
support during the development and for the lots of useful
tips given.

References
[1] Hugues Hoppe: Progressive Meshes. In ACM

SIGGRAPH 1996, pages 99-108.

[2] A. L. Ames, D. R. Nadeau, J. L. Moreland: VRML
2.0 sourcebook. John Wiley & Sons, Inc. 1997

[3] Stan Melax: A simple, fast and effective polygon
reduction algorithm. Game Developer Magazine,
November 1998.
URL: http://www.melax.com/polychop/gdmag.pdf

[4] M. Grabner: Multiresolution based on View-
Dependent Progressive Meshes. CESCG 1999.
URL: http://www.cg.tuwien.ac.at/studentwork/CESCG99/
MGrabner/

[5] Szirmay-Kalos, L.: Monte-Carlo Methods in Global
Illumination. Institute of Computer Graphics,
Vienna University of Technology, 1999

[6] Szirmay-Kalos, L.: Stochastic Iteration for non-
Diffuse Global Illumination. In Computer Graphics
Forum (Eurographics '99), pages 233-244, volume
18, number 3.

[7] Java 3D API Collateral
URL: java.sun.com/products/java-media/3D/collateral/

[8] Java 3D Tutorial, URL: www.java3d.org/tutorial

[9] Java 3D FAQ, URL: www.j3d.org/faq/intro.html

Appendix

Here follow some additional examples of mesh simplification. The following example (Figure 16) shows that polygon
count can be reduced up to 50 (or 25) percent without significant loss of information.

16. Figure – A simple bunny with 1400, 600, 300 and 100 faces

The following example (Figure 17) shows that because of the locality of the algorithm a continuous mesh may even
break up during the simplification process.

17. Figure – Mesh simplification example using Formula 1 (1260, 1000, 800, 600, 400, 300, 200 and 150 faces)

Let us compare the results using the first and the second formula (Figure 17 and 18)!
Remark. The original mesh seemed to be manipulated by hand, because adjacency information for the faces was

defective. Missing face neighbors lead to the rapid deformation of the head and feet. Because of this we should only
consider the torso and the limbs.

Using Formula 1, deformation of the legs seemed to be much faster, while Formula 2 provided an appropriate result
even with 300 faces. Same applies to the arms and the shoulders.

18. Figure – Mesh simplification example using Formula 2 (1260, 1000, 800, 600, 400, 300, 200 and 150 faces)

On the following figures (Figure 19 and 20) the two formulas can be compared. The first eight meshes were generated
using Formula 1, while the remaining ones were generated using Formula 2. It is easy to notice the differences around
the discontinuities.

19. Figure – Simplification using method #1 (460, 400, 350, 300, 250, 200, 150 and 100 faces)

20. Figure – Simplification using method #2 (460, 400, 350, 300, 250, 200, 150 and 100 faces)

