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Abstract 
Because of the real-time requirements, the complexity of 
the models in a virtual reality application is limited. In 
our work we applied a preprocessing phase to increase 
the fidelity of the virtual world while meeting these 
requirements. 

First we focused on the simplification of complex 
polygon meshes. We found an easy-to-use method to 
reduce the number of polygons in the model without 
significant loss in visual accuracy. The polygon 
reduction algorithm performed so called “edge collapse” 
operations that removed edges from the model. In our 
work we compared two simple edge collapsing 
strategies. During the simplification several variants of 
different complexity were generated from the same 
model. During rendering the most suitable variant was 
chosen using Level of Detail switching technique.  

Another focus area of our work was to create realistic 
light conditions in a virtual world. Although global 
illumination algorithms generate physically correct light 
conditions they cannot be applied in a real-time 
application because of their excessive time consumption. 
In our work we used textures to map light conditions 
onto the surfaces. We calculated light conditions in a 
preprocessing phase using a global illumination 
algorithm and then we saved the result as textures and we 
mapped them onto the corresponding surfaces. 
 
Keywords: virtual reality applications, polygon mesh 
simplification, realistic light conditions, global 
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1 Introduction 

1.1  VR in education 
Since there is no health risk when fighting a virtual air 
battle in a flight simulator or exploring a virtual nuclear 
power plant in an industrial application (Figure 1), virtual 
reality (VR) applications became widely used for 
educational purposes. The aim of these VR applications 

is to provide employees with a daily routine that is 
essential for their safety, and to train them how to act in 
an emergency situation.  

 

 
1. Figure – Exploring a nuclear power plant 

In a nuclear power plant, because of the radiation 
exposure, workers may not perform their activities at an 
arbitrary place and for an arbitrary duration. Using a VR 
simulator, workers can get acquainted with the complex 
of the plant without any risk. They can walk through the 
halls of the plant (as seen on Figure 1), while the 
radiation level of their environment may be displayed 
with different colors on the floor. So workers can make 
an attempt to minimize the radiation dose through 
avoiding high-radiation areas and following an optimal 
path during their activity.  

1.2  VR requirements 
To deceive the user‘s senses in a VR simulator is a rather 
complex task. A basic requirement is the synchronous 
operation of the different devices. Any inaccuracy will 
result in dramatic decrease in realism. For example, if 
computing time increases because of a realistic, large 
polygon model, the simulator will only be able to 
respond to the user interaction with a significant delay. If 
the user turns his/her head to the side, the view appearing 
on the display of the VR-helmet will only follow this 
movement with a delay that maybe cannot be noticed 



directly, but may result in the fatigue and dizziness of the 
user. This phenomenon is called the “simulator disease”. 

Because of the possibility of the simulator disease 
effective visualization algorithms are needed that meet 
both real-time requirements and increasing user 
demands. Our goal was to increase the fidelity of the 
virtual models while keeping real-time requirements. The 
two focus areas we dealt with were mesh simplification 
techniques and realistic light conditions using textures. 

2 Mesh simplification techniques 
We were looking for an easy-to-implement method 
which was able to reduce the number of polygons in the 
model without significant loss in visual accuracy. Firstly, 
two existing mesh storage techniques will be described: 
Level of Detail switching and progressive meshes. 

2.1 Mesh storage techniques 
Level of Detail (LOD) switching is the simplest 

solution to the problem of mesh complexity. In this 
approach different variants of the same model are created 
and they are stored independently (see Figure 2). These 
variants are prepared in an off-line preprocessing phase. 
Because of the limits in storage capacity only a few 
(e.g. three) variants can be used. At every moment of the 
rendering, the most adequate variant is chosen. That 
means we choose the less complex variant that produces 
an image quality “good enough”. When zooming in to an 
object, switching between the different variants may 
cause rough visual transitions called “popping effect”.  

 
2. Figure – Different LOD variants of a torch 

Progressive meshes (PM) represent a more 
sophisticated storage technique (see [1], [4]). Unlike 
LOD switching (where the variants are stored 
independently), a progressive mesh is stored in a form of 
a coarse base mesh and a sequence of detail records. 
These records are used to refine the base mesh into the 
original mesh. During rendering, the most adequate 
variant of the model is constructed by applying the detail 
records one after another to the base mesh until the 
resulting mesh becomes “good enough”. 

Although progressive meshes represent an excellent 
and natural approach to the problem of level of detail, 
they need some extra data structures and processing time 
during rendering. On the other hand, LOD switching can 

easily be implemented even in a single VRML file 
(VRML supports a node called “LOD”, see [2]). That is 
why we preferred LOD switching when choosing a 
storage technique. 

2.2 Generating mesh variants 
To generate the different mesh variants an operation 

called edge collapse is used. This operation removes an 
edge and two adjacent faces from the model (see Figure 
3). The edge will be replaced with a single vertex. If we 
apply the edge collapse operation several times to the 
original mesh we will get ever coarser meshes. 

 
3. Figure – The edge collapse operation removes an 
edge from the model 

In each step a criterion is used to choose the most 
“adequate” edge to collapse. In our implementation we 
used a so-called local criterion. Local criteria consider 
only the actual mesh before performing an edge collapse 
operation on it. They “forget” the original mesh so there 
is no guarantee that the resulting base mesh will even be 
similar to the original one. (Moreover, a continuous mesh 
will probably break up, as you may see in the appendix.) 
In return, this algorithm is much faster than the 
algorithms based on global criteria that “remember” the 
original mesh. 

First we performed the edge collapse operations using 
the following simple formula (see Formula 1). The 
meaning of the symbols is as follows: e is the actual 
edge; f1 and f2 are its neighbor faces. 
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1. Formula – a simple local criterion 

According to the formula, a longer edge will have a 
higher cost than a shorter one, because of the bigger 
nominator. Similarly, larger “crack” along the edge 
means larger difference in the face normals, resulting in 
smaller dot products that imply smaller denominator and 
higher cost. For example, when the angle between the 
face normals is a right angle, then the denominator 
becomes zero and the cost becomes infinite (see Fig. 4).  
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4. Figure – How cost depends on the angle between 
the two adjacent faces 

A problem with Formula 1 is that it is “short-
sighted”. It only takes into account those two faces that 
are adjacent to the edge under examination. The 
neighbors of these two faces are not considered. In order 
to show the importance of this issue let us take a cube 
and one of its diagonals (shown with an arrow on Figure 
5)! The normals of the adjacent faces are parallel, so the 
nominator is 1, which is its largest possible value, so the 
cost is minimal. That means this operation will be 
performed as one of the very first edge collapses, 
although it causes a considerable change in the mesh 
topology (see the right side of Figure 5). 

 

 
5. Figure – A cube before and after an edge collapse 
operation 

In order to avoid the aforementioned problem and to 
improve the quality of the result, a more sophisticated 
formula is needed. An easy-to-use formula was found in 
the article of Melax ([3]) (see Formula 2): 
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2. Formula – a more sophisticated local criterion  

The meaning of the symbols is as follows (see Figure 
6 for the notation): e is the edge being examined; u and v 
are its end points. Faces f1 and f2 are the neighbors of the 
edge e. The set F represents the faces that are adjacent to 
vertex u, but not adjacent to vertex v. Let us call them 
“semi-adjacent” to the edge e. 

 
6. Figure - Notation used in Formula 2 

As we can see, this formula is asymmetric, since it 
describes the cost of collapsing vertex u into vertex v. To 
calculate the opposite direction (collapsing v into u), we 
have to repeat the calculations with a different F set of 
faces. 

Unlike the previous one, this formula does take care 
of the neighborhood of the disappearing vertex (u). 
Namely, from this neighborhood the “most expensive” 
face is considered. 

Let us consider an adjacent face (f1 or f2) and a semi-
adjacent face (i.e. from the set f)! The cost they define 
depends on the angle between their normals as shown on 
Figure 8. 
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7. Figure – How cost depends on the angle between an 
“adjacent” and a “semi-adjacent” face 

On a flat surface, for example, the angle between the 
normals of the aforementioned faces is zero, that means 
their dot product is 1, resulting in a minimal cost of 0.  

On a cube, if we consider one of its diagonals (see 
Figure 5 again), the angle between the adjacent and semi-
adjacent faces is a right angle, resulting in a cost of 0.5. 
This high cost will delay the collapse of this edge until 
there are no other edges with a lower cost. 

2.3 Implementation 
After discussing the principles of mesh simplification 
techniques, here follows a detailed explanation of our 
implementation. The application was implemented in 
Java. It receives a polygon model in an input VRML file, 
generates different levels of detail using Java3D, and 
then saves them as VRML output files. 

In order to import the initial VRML file into Java3D, 
we used the class VRML97Loader of the package 
org.web3d.j3d.loaders. This class loaded the content of 
the VRML file and transformed it into a Java3D scene 
graph (about Java3D and scene graphs see [7], [8] and 
[9]). 

During the importation of the VRML file, shapes 
were automatically tessellated into triangles and 
rectangles. But face indexes and vertex indexes were lost 
during the loading, resulting in a set of "independent" 



faces, and only containing the topological information 
implicitly. 

After loading the model we had to recover this 
topological information (Figure 8) by separating vertex 
information and face information from each other. We 
took polygons one after another and examined their 
vertices. New vertices were inserted into a vertex list. 
Vertices found in the vertex list were referenced further 
on with their indices. 

 
8. Figure – Recovering topological information 

After recovering explicit topological information we 
were ready to perform edge collapse operations. In each 
step, the edge with minimal cost was eliminated. The 
resulting mesh is periodically saved into separate files 
that will be at last composed into a single VRML file 
using the LOD node. So switching between the different 
representations is made automatically by the VRML 
browser. 

In order to make edge collapses visible during the 
simplification process, faces of the model were displayed 
in a specific way. Three different shades of grey were 
specified and these colors were bound to the vertices of 
each triangle in a random order, as seen on the Figure 5. 
So, in most cases, adjacent faces received different colors 
along their common edges, making edges easy to 
observe. In order to ease the examination of the model 
arbitrary rotation of the model was allowed.  

In order to facilitate the simplification of large 
polygon models, so-called interaction points were 
introduced. Instead of displaying (and saving) the result 
after each simplification step, the result was only 
displayed and saved at the interaction points. The number 
of simplification steps between two interaction points 
was defined by the user. For example, if a step of 1000 
was given, files containing …, 3000, 2000, 1000 
polygons were created. 

The application can be used for demonstration 
purposes, as well. In this case, the program stops at each 
interaction point, highlights the next edge to be collapsed 
and waits for a mouse click. In order to reduce the 
number of clicks when the number of the polygons is 
large, a threshold can be specified, and a mouse click is 
only needed at an interaction point if the number of 
polygons is less than the given threshold.  

3 Realistic light conditions using 
textures  

When using a VR application, light conditions are 
expected to be similar to those in the real physical world. 
But in a real physical environment light conditions 
depend not only on the light sources that illuminate the 
object directly, but on the lights reflected from all other 

objects, too. Because of this coupling between the 
objects, the time consumption of the global illumination 
algorithms (that are able to calculate physically correct 
light conditions) is extremely high, so there is not enough 
computing capacity to apply global illumination in VR 
applications. 

One possible solution to the problem is the 
application of an off-line preprocessing phase. During 
this phase, light conditions could be calculated and the 
result could be mapped onto the surfaces in a form of 
textures. Since these textures are static (they act like 
wallpaper), they are not suitable for specular materials, 
such as a mirror. More precisely, since the light 
conditions that are mapped onto the surfaces do not 
depend on the viewer’s position, they can only be applied 
in case of diffuse lightning, e.g. a whitewashed wall. In 
case of specular lightning, light conditions cannot be 
“glued” on the surface. 

3.1  RenderX – a global illumination 
software 

We applied “RenderX” global illumination software to 
calculate the light conditions ([5], [6]). The RenderX 
software opens a VRML file, calculates the light 
conditions using various methods for global illumination, 
and saves the resulting light conditions into an XML file 
in the form of RGB values. 

In order to increase image quality, RenderX 
tessellates large triangles into smaller ones before 
running the global illumination algorithm. The XML 
output file will contain RGB information for each small 
triangle called “patch”.  

3.2 Implementation 
We developed an application that read the XML file 

and loaded RGB values of the patches into an internal 
data structure. The next step was to identify the patches 
that originate from the same triangle. In order to reduce 
the amount of computing, all patches lying in the plane 
of the given triangle were selected. Using a simple 
coordinate transformation, these patches were 
transformed to be facing to the camera and they were 
scaled to fit into the window. In this moment the patches 
were ready to make a “snapshot” of them. Using Java3D 
raster operations, a rectangular window of the screen was 
read and saved into an image file. After computing the 
coordinates of the vertices in the texture space we could 
map the texture onto the original mesh. 

The RenderX output contains a single RGB value for 
each patch. When using only one color per patch for 
drawing, edges between patches become visible. To 
avoid this, we derived a color value for each vertex. 
(That means we will be able to draw a patch using three 
RGB values.) The color of each vertex was composed by 
using the color of the adjacent patches. Each patch color 
was weighted with the angle belonging to the patch at the 
examined vertex. 



4 Results 

4.1 Mesh simplification 
It is an important issue whether the algorithms are 

able to preserve sharp “cracks” on the surface called 
discontinuities. In order to test the aforementioned 
formulas we created an ellipsoidal shape with a 
cylindrical hole in it (see the left side of Figure 9). When 
we reduced the shape with first formula, the algorithm 
was unable to preserve the discontinuity around the hole 
(see the right side of Figure 9). 

 
9. Figure – An ellipsoidal shape reduced with the first 
formula (452 and 200 faces) 

Despite its simplicity and locality the second formula 
produced surprisingly faithful results. It was able to 
preserve the discontinuities of the model as shown on 
Figure 10. 

  
10. Figure – The same shape reduced with the second 
formula (452 and 200 faces) 

The problem with both formulas is that each formula 
consists of two factors, “length” and “smoothness”. 
These factors are coequal so they are able to compensate 
each other. For example an edge representing a sharp 
discontinuity may have a low cost when the edge is short 
enough. So a discontinuity on the surface may disappear 
during the simplification if it consists of short edges. 

Remark. More examples for mesh simplification can 
be found in the appendix. 

4.2 Lightmaps 
In order to demonstrate the results after processing the 
RenderX output, the following VRML scene was chosen 
(see Figure 11): 

 
11. Figure – A simple VRML scene displayed by a 
VRML browser 

There are two light sources in the VRML world (the 
VRML browser did not display them). We loaded the 
model into RenderX and we got a snapshot of the virtual 
world as shown on Figure 12. Due to the physically 
correct calculations light sources and shadows became 
visible. 

 
12. Figure – The output of the global illumination 
algorithm 

Using our application we can extract the light 
conditions on the wall behind the stairs (Figure 13). 
Using the aforementioned trick we can produce three 
RGB values for each triangle (Figure 14). 

 
13. Figure – Texture generated from the RenderX 
output (wall behind the stairs) 



 
14. Figure – Smooth version of the same texture 

Another possible applications of lightmaps: 

 

 
15. Figure – Textured pipes in an industrial 
application 

5 Conclusion and future work 
On the previous pages we provided an overview of the 
methods that can be used in a VR simulator to enhance 
reality without radical increase of computing work. Both 
mesh simplification and lightmaps were tested with 
simple models and produced adequate results. 

In the future, a more user-friendly mesh 
simplification application could be developed and it 
could be used as a demonstrating tool. It would be nice to 
make a comparison between different local and global 
edge collapse strategies. 

Interesting light effects could be achieved with the 
use of more than one texture per face. For example, 
depending on the viewer’s position, different textures 
could be used. 
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Appendix 
 
 
 

Here follow some additional examples of mesh simplification. The following example (Figure 16) shows that polygon 
count can be reduced up to 50 (or 25) percent without significant loss of information. 

 
16. Figure – A simple bunny with 1400, 600, 300 and 100 faces 

The following example (Figure 17) shows that because of the locality of the algorithm a continuous mesh may even 
break up during the simplification process.  

 

 
17. Figure – Mesh simplification example using Formula 1 (1260, 1000, 800, 600, 400, 300, 200 and 150 faces) 



Let us compare the results using the first and the second formula (Figure 17 and 18)! 
Remark. The original mesh seemed to be manipulated by hand, because adjacency information for the faces was 

defective. Missing face neighbors lead to the rapid deformation of the head and feet. Because of this we should only 
consider the torso and the limbs. 

Using Formula 1, deformation of the legs seemed to be much faster, while Formula 2 provided an appropriate result 
even with 300 faces. Same applies to the arms and the shoulders. 

 

 
18. Figure – Mesh simplification example using Formula 2 (1260, 1000, 800, 600, 400, 300, 200 and 150 faces)

  



On the following figures (Figure 19 and 20) the two formulas can be compared. The first eight meshes were generated 
using Formula 1, while the remaining ones were generated using Formula 2. It is easy to notice the differences around 
the discontinuities. 

 
19. Figure – Simplification using method #1 (460, 400, 350, 300, 250, 200, 150 and 100 faces) 

 

 
20. Figure – Simplification using method #2 (460, 400, 350, 300, 250, 200, 150 and 100 faces)

 


