
WebCAME -

A 3D Multiresolution Viewer for the Web

Helfried Tschemmernegg

tschemmi@gmx.at

Graz University of Technology

Institute for Computer Graphics and Vision

Abstract

In this document WebCAME, a multiresolution
viewer for 3D scenes on the internet is described.
While being capable of displaying various multires-
olution scenes, it has been developed with computer-
aided virtual archaeology in mind and will be used
primarily to visualize a virtual representation of an
excavation site.

Regarding navigation in the scene, a great effort
has been made to achieve the best possible usability.
By just using the mouse and its buttons, the user can
freely move and look around in the scene. This results
in a low number of push-buttons being needed, which
contributes a lot to simplicity.

Moreover, additional data needs to be displayed
sometimes to give further explanations for certain ob-
jects. These data are referred to as metadata. To
draw the user’s attention to them, virtual glass-cases
are put over the interesting objects. By clicking one
of these glass-cases, the user can change to a special
navigation mode that allows to view a single object
within a scene by circling around it on an imaginary
sphere.

Keywords: 3D, Viewer, Navigation, Metadata,
Multiresolution

1 Introduction

This project has been motivated by the Murale
project that deals with computer-aided virtual ar-
chaeology. Murale is an abbreviation for “3D
Measurement and Virtual Reconstruction of Ancient
Lost Worlds of Europe”. Led by the Brunel Univer-
sity, London, a consortium of universities and com-
panies engage in the development of reconstruction
and visualization tools for use by a team of archae-
ologists working in Sagalassos, Turkey. The excava-
tion site near Antalya is conducted by a team from
the Katholieke Universiteit Leuven which has been
excavating the whole area since 1990, led by Prof.
Waelkens. Additional Information about Murale can

be found in [1], [2] and [3]. The homepage (see [4])
may provide some more recent information as well.

As for every virtual reality task, a viewer is needed
to visualize the 3D scenes. And to be able to make the
scenes accessible for a large group of interested people
it is necessary to use the advantages of the internet.
Thus, WebCAME has been developed as a browser
plugin for Mozilla.

There is already a very powerful ISO-standard
called VRML (see [5]) that should be perfect for this
problem. The following paragraphs explain the rea-
sons, why an extra application has been developed:

Navigation. Many VRML-viewers have been writ-
ten until the present day. Some of them are available
as standalone applications only, others come as plug-
ins for Web browsers. But all of them only have one
basic purpose - to display and link together virtual 3D
scenes - which they accomplish more or less perfectly.
They all have to be designed as multi-purpose view-
ers, because a wide variety of different scenes may be
implemented using VRML. And it is exactly this gen-
erality that causes one of the main problems of actual
VRML-viewers: It is very easy to get lost in the scene
which is mostly caused by somehow unnatural nav-
igation modes. It happens very often that the user
finds himself upside-down. This might not be a prob-
lem if only a single object is viewed. But it can be
very distracting, if that happens in the 3D model of a
real scene where the observing visitor is supposed to
stand on the ground and watch buildings and other
objects. In VRML, specifying the so called WALK-
mode is one possible solution. In this mode the user
is always in an upright position. Furthermore, grav-
ity ensures that the user always stands on the ground.
But if an unexperienced user activates the FLY-mode,
which is also a standard navigation mode of VRML,
it is again very easy to lose orientation. Although
it is no problem to restrict the selectable navigation
modes, this is not done in most of the VRML files
available on the internet, since the FLY-mode may of
course be useful in many cases. Another solution is to
provide the user with viewing points. In the case of



getting lost he can choose from these points and will
find himself in a stable, upright position again. But
this solution fights the symptoms instead of making
it impossible to get lost. So a better solution had to
be found and it has been decided to give WebCAME
a navigation that comes as close as possible to that in
real life. There is no way for the user to get into any
upside-down position.

Metadata. Another important requirement was the
visualization of metadata. While this is extremely
important for the intended application area of virtual
archaeology, it can also be of great use for visualiz-
ing cities and their sights or any other 3D scene that
contains interesting objects.

All objects and artifacts that are found on the
Sagalassos excavation site are being reconstructed
digitally as textured 3D models by the team of the
Murale project. But the archaeologists working at
the excavation site and in the laboratories do not
only attempt to reconstruct and preserve the artifacts.
They also discover a huge quantity of non-visible facts
about every single object that is found. These facts
are then stored in the central Murale database where
they can be accessed for further investigation. If the
3D models of those objects and artifacts are displayed
in a virtual representation of an excavation site, it is
important to show the user, that further information
exists for certain objects. If he is interested in such
information, it must be easy to obtain, for example by
clicking on the desired object. The task of drawing the
user’s attention to an interesting object has been ac-
complished by wrapping it with its own bounding box.
To provide the object’s visibility within those boxes
anyway, they are overlaid using alpha-blending. This
technique has been implemented in its own so-called
HotSpot-class to allow portability to other applica-
tions.

Multiresolution. Finally, when displaying the highly
detailed scenes on normal PCs, even accelerated
graphic cards do not have the necessary capacity to
display smooth animations (for an example, see [6]).
This problem can be solved by simplifying the scene
with efficient multiresolution algorithms. But an effi-
cient implementation of those algorithms is nearly im-
possible with VRML. In fact, this is the main reason
that prevents VRML from being used for the Murale
project. CAME (described in [7]) is a multiresolu-
tion system that supports progressive transmission of
highly detailed polygon meshes. This is very useful,
especially if the 3D data has to be transmitted over
the internet. It allows to first display a rough model
of the scene with virtually no delay for the user. This
rough model can then be refined depending on the
available bandwidth and the actual viewing direction.

1.1 Our Approach

There are some viewers supporting multiresolution
already. One of them is MetaStreamTM by View-
point Company, which is described in [8]. It is capa-
ble of streaming multiresolution meshes and progres-
sive transmission, which is perfect for transmitting
huge polygon meshes. So, it would fully satisfy the
requirement for multiresolution capability. But for
the intended prime application field of WebCAME,
which lies in virtual archaeology, the visualization of
metadata is another very important feature. A lot
of non visible additional data are collected in a huge
database. And there must be a fully integrated ca-
pability to access this database from the 3D scene
viewer. Thus, object identifiers are added to the
multiresolution data as described in [9]. The object
identifiers can be used for another important feature:
WebCAME will be able to unhinge single objects from
the whole multiresolution hierarchy. Thus, the user
will be able to manipulate single objects that are ac-
tually part of the multiresolution mesh. For these rea-
sons WebCAME, a viewer covering all those desired
abilities has been developed in this project.

1.2 Overview

A detailed description of the implemented compo-
nents will be given in the following sections. In section
3, first the specifications of WebCAME are presented.
The following sections describe the methods used for
navigation, visualization of metadata and multireso-
lution. Section 4 explains the implementation-details
of the methods described in section 3. Section 5 cov-
ers the test data that were used while developing the
viewer. The results are presented in section 6 with
some screenshots. Finally, section 7 gives a future out-
look to features that are planned to be implemented
in the near future.

2 Related Work

2.1 User Interface

The design of user-interfaces is a very common task in
programming. Various publications about optimizing
the usability of programs can be found. With the in-
creasing performance of accelerated 3D graphics hard-
ware and the resulting high number of viewers for vir-
tual 3D environments, the question on the usability of
those viewers emerges. Some very interesting surveys
and ideas about this topic can be found in [10] and
[11].



2.2 Spatial Navigation

2.2.1 Moving Freely

The task of moving within a virtual scene has already
been treated in many publications. An interesting
survey about different ways of navigation was con-
ducted in [12]. In [13] a toolset for navigation in vir-
tual environments is described. It has been developed
with focusing on principles of navigation in the real
world.

2.2.2 Object-Centered Navigation

Object-Centered Navigation is a bit more specialized
than moving around freely. Some center must be cho-
sen, around which the user can move in this naviga-
tion manner. Although it may not be a very com-
mon mode of navigation, there are several publica-
tions available dealing with this topic. One proposal
is presented in [14]. The method of raycasting to se-
lect objects in a scene is introduced in [12]. A similar
method has been used to check whether the user has
hit or failed one of the HotSpots with a mouse click.

2.3 Multiresolution

To enable WebCAME of being used on the internet,
the bandwidth required to transmit a scene’s 3D data
must be kept in mind. Multiresolution techniques
are a very good way to allow both, reasonable scene-
loading times and the ability to refine the scene suc-
cessively according to the available bandwidth. Thus,
CAME is used for this purpose. A detailed descrip-
tion of CAME can be found in [7]. An application of
CAME technology in web context is described in [15].

3 Specifications

As stated in the introduction, WebCAME has three
main advantages over conventional 3D-scene viewers.
First, the navigation is less general which results in a
more natural handling, bearing surface based explo-
ration in mind. Second, it is equipped with a good
possibility to direct the user’s attention to objects
with further background information in the form of
HotSpots. And third, the user can start exploring a
scene immediately due to CAME that provides sup-
port for progressive multiresolution meshes.

3.1 Navigation

Navigating in virtual environments is not always easy
for the user. The main problem is, that usually there
is only a 2D-pointing device (mouse, touchpad, track-
ball, etc.) to navigate in a 3D scene that is displayed
with 2D display technology. That can be quite dis-
tracting for human beings who are used to live in a

fully-fledged 3D environment. Although the mainly
focused user group for the WebCAME viewer are ar-
chaeologists, it might also be useful for museums to
present the excavation site to the visitors or even for a
presentation on the internet. That was the reason why
an easily learnable navigation had to be invented. The
first versions of WebCAME had many pushbuttons
for choosing the actual navigation modes. The cur-
rent version comes with only two pushbuttons. This
is possible because all available mouse buttons (usu-
ally two or three) are used for navigating and moving
within the scene. This approach has emerged as the
fastest and easiest way of navigation.

As with every program, the user must learn how
to operate the WebCAME viewer, to get the desired
results. To keep this learning process as easy as pos-
sible, existing knowledge of how to use a computer
mouse is used. Every user knows that a mouse click is
mostly followed by some action happening on the dis-
play. And the commonly used drag-and-drop mecha-
nism is a perfect analogue to real life where you can
grab an object with the hand and put it somewhere or
turn it around while viewing it. Furthermore different
mouse buttons usually have different meanings. The
left button is the one that is used for the main actions
while the right button very often leads to optional
functions. Most of the computer mice also provide a
third button. This button is also used for navigation.
But to enable users with 2-button mice to use all func-
tions as well, pressing the middle button is equivalent
to pressing both, the right and the left button, at the
same time.

According to these facts, a well-elaborated naviga-
tion mode has been developed. There are two dif-
ferent camera-modes, the Free-Camera-Mode and the
Object-Centered-Mode. In both modes, there is a
direct interaction of mouse-movement and in-scene-
movement. That means that the virtual camera does
will move if the user does not move the mouse. This
is another difference to common viewers, that mostly
continue to move the virtual camera in a speed ac-
cording to the distance between the clicking point and
the actual position of the mouse-pointer. This mode
of navigation increases the risk of getting lost in the
scene and is therefore not used for WebCAME.

3.1.1 Free-Camera-Mode

In Free-Camera-Mode the left mouse button is as-
signed the most important ability of looking around
in the scene. While pressing the left mouse button,
the mouse movement is captured to turn the camera.
Any movement in x-direction changes the camera’s
panning-angle, which corresponds to looking left and
right in reality. Movements in y-direction lead to a
change of the tilt-angle, which would mean to look up
and down in real life.



Pressing the right mouse-button provides another
analog that is similar to walking forward, backward
and sidewards in reality. Mouse-movement in x-
direction moves the camera sidewards while moving
the mouse in y-direction moves the camera forward
and backward now.

The third possibility for camera movement is chosen
by pressing the middle mouse button or alternatively
both, the right and the left button simultaneously.
This mode allows the user to change the altitude with
movements in y-direction. Movements in x-direction
again lead to panning the camera left and right.

Table 1 gives an overview of the possible camera
movements in Free-Camera-Mode .

Mouse-Button Action

look around
left x: look left and right

y: look up and down
move & look

right x: move left and right
y: move forward and backward

change altitude, move sidewards
left & right x: look left and right
(middle) y: move up and down

Table 1: Behaviour in Free-Camera-Mode

3.1.2 Object-Centered-Mode

Viewing objects in a scene can be annoying without a
proper camera mode that supports circling around the
object with the camera always pointing to that object.
Thus, a special camera mode, which accomplishes this
task has been developed for WebCAME.

The Object-Centered-Mode of WebCAME is acti-
vated automatically by choosing any HotSpot with a
mouse-click on it. Thus, the HotSpots have to be dis-
played first. To do this, the user must click on the
Choose Object Button, which displays all HotSpots
within the current scene. If the user then chooses
any object, the camera will automatically move close
to that object with its viewing direction pointing to
the object’s center. Now the user can move on an
imaginary sphere surrounding the object. The angles
of the camera are set automatically to point its aim-
ing always to the center of the object, while Object-
Centered-Mode is being used.

By pressing the left mouse-button and moving the
mouse, the user can move around freely on the pre-
viously described imaginary sphere. Movement in x-
direction means walking around the object on a circle
lying parallel to the ground-plane while moving the
mouse in y-direction moves the camera up or down
on the imaginary sphere.

With the right mouse-button, the distance to the
object can be changed according to mouse movement
in y-direction. Moving in x-direction again allows cir-
cling around the object.

Table 2 gives an overview of the possible camera
movements in Object-Centered-Mode .

Mouse-Button Action

x: circle around object
left y: move up or down on

the virtual sphere
x: circle around object

right y: decrease or increase the
distance to the object

Table 2: Behaviour in Object-Centered-Mode

3.2 Visualization of Metadata

Every artifact that is found on an excavation site pro-
vides many pieces of information in addition to its
bare visual appearance. Archaeologists usually dis-
cover a huge number of facts that are not visible like
age, material, possible purpose, level of confidence
etc. All those facts are usually collected in the central
database of the Murale project. If a virtual 3D scene
is constructed from this database, the user can walk
around and explore the scene. But how does he know
that there is further interesting information available
for certain objects?

Thus, a way must be found how interesting objects
can attract the user’s attention. For WebCAME, this
is done by displaying virtual glass cases enclosing the
interesting objects. These glass cases are being dis-
played by the HotSpots-class. By clicking the Choose
Object button, the user can activate the display of
those HotSpots. A second click on the same button
will switch back to normal scene-observation mode
without HotSpots being displayed. If the user then
decides to have a closer look on any object that is
marked by a virtual glass case, he can select it by a
single mouse-click. The WebCAME viewer switches
to Object-Centered-Mode and moves the camera close
to the object. Then, the user can explore the object.
To leave the Object Mode, the user must only click the
Free Camera-button and the camera may be moved
freely again.

Furthermore, additional information can be dis-
played in another frame of the webpage using HTML
containing text, pictures or even videos, for example.
This can easily be done because WebCAME supports
calling JavaScript functions and means a great deal
of freedom in the design of multimedia web presen-
tations about archaeological excavation sites or any
other online resource using WebCAME.



3.3 Other Features

Besides the previously described camera modes and
visualization functions, three further features have
been implemented in WebCAME :

• a wireframe mode, which can be useful if tex-
tures are applied to multi-resolution meshes. Be-
cause of the textures it can be impossible to rec-
ognize the exact edges of the faces in the scene.
But for developing multiresolution environments
it is quite important to know where the edges are.
Furthermore it has been a useful feature for visu-
alizing the structure of the ground surface while
using the simple test-dataset described below.

• a possibility to switch textures on or off. During
the development phase it can be very informa-
tive to see the untextured version that reveals the
construction details of every object. But for a re-
alistic appearance of scenes, textures are a must.
So, the use of textures can be switched on or off
easily to satisfy both requirements. Those of de-
velopers who want take a look at the ’backstage-
area’ of a scene and those of viewers who want to
view realistic scenes.

• a slider to choose the desired level of detail. It
would not make any sense to transmit more data
than the user wants to see. Thus there is the
possibility to first view a low-detailed version of
a scene (slider on the left side). If further detail
is desired, the level of detail can be raised by
moving the slider to the right.

These features can be controlled by three additional
widgets: two checkboxes and one slider. The first
checkbox is used to enable or disable the wireframe-
mode. The second checkbox triggers the application
of textures in the scene. And the third control widget,
the slider, is there for choosing the desired level of
detail.

4 Implementation

4.1 Environment

WebCAME has been developed and implemented us-
ing GNU Linux, the Qt library by Trolltech [16] and
the Plugin-SDK by Netscape [17]. For further in-
formation about Qt’s support for Netscape/Mozilla
plugins refer to the LiveConnect Plugin site [18] by
Trolltech.

4.2 Framework

A basic code-framework for Netscape browser-plugins,
which has been programmed by Markus Grabner, was

the starting point for my work. This framework pro-
vided the possibility to compile the whole project both
as a standalone application and a browser-plugin,
which is made possible by the modular concept of
Qt’s QWidget class. Every QWidget can contain
other QWidgets. So there are two containers: one
for the standalone application and the other one for
the plugin. Both of them contain the same viewer
widget. The viewer plugin itself was based upon the
QGLWidget class, which provides OpenGL support
for Qt widgets. Of course this is essential for a 3D
viewer. For the development and debugging process,
the standalone application was used most of the time,
because it is more convenient to call a single applica-
tion than always having to use a browser to examine
the results of a build.

4.3 Scene Visualization

To render the virtual scene on screen, OpenGL is used.
The reason for this choice is simple: OpenGL is the
best solution for writing portable software that uses
3D acceleration. The OpenGL Programming Guide
[19] has been a great help for that task. WebCAME
has been developed under Linux, but there are plans
to port the viewer to Microsoft Windows platforms to
be used as ActiveX plugin for Microsoft Internet Ex-
plorer. Although Microsoft has developed their own
standard named Direct3D the Windows-Version will
also use OpenGL.

4.4 Navigation

All navigation purposes can be accomplished with
very basic mathematical knowledge about vectors.
The first step is to construct a virtual camera, whose
position and aiming is known to all components in-
volved in navigation. For this purpose, a vector with
three components is used to store the current position
of the camera in the scene. Then, there are two float-
variables that store two angles defining the camera’s
aiming. One of them, the panning angle, holds values
between 0 and 2π, indicating to which direction paral-
lel to the ground surface the camera is pointing. The
other one is the pitch-angle and holds values between
−π/2 and +π/2 to indicate if the camera is looking
up or down. Before we can start to render anything,
the transformation matrices must be set according to
the position (translation) and aiming (rotation). of
the virtual camera. The required values for these op-
erations can be easily obtained from the data known
about the camera.

4.4.1 Free-Camera-Mode

The translation operations needed for moving the
camera are very easy to understand. For moving for-



ward, a vector has to be added to the camera’s actual
position. This vector is calculated from the panning-
angle only. For moving sidewards, another vector is
needed. It can be obtained simply by adding π/2
to the panning angle. Moving up and down means
increasing or decreasing the y-value of the camera’s
position. The y-values are changeable freely, because
there is no terrain tracking with collision detection
yet.

For looking around, the two angles indicating the
camera’s aiming are responsible. Looking left and
right is done by increasing or decreasing the panning-
angle. The pitch-angle must be increased or decreased
in order to look up and down.

4.4.2 Object-Centered-Mode

Camera movement in Object-Centered-Mode first
seems to be a little more tricky. But after having
a closer look it is quite easy as well.

Circling Around The Object. To move the camera
around the object on an imaginary circle, first, the
panning angle is increased or decreased. Then a vec-
tor is calculated that points to the inverse direction of
the camera. This inverse direction can be easily ob-
tained by adding π to the panning-angle. To update
the camera’s position, the vector that has just been
calculated must be added to the center of the virtual
circle.

Moving Up And Down. Moving up and down is very
similar to circling around the object. Here, the pitch-
angle is used instead of the panning angle. And there
is the additional requirement that the angle must be
between -π/2 and +π/2 to prevent any upside-down-
situations. In fact, the user is detained from going
down the other side of the imaginary sphere, once he
has reached the top. The same principle applies for
the bottom.

4.5 Visualization of Metadata

As described in section 3, the visualization of meta-
data is done by bounding boxes surrounding the ob-
jects like glass cases. These glass cases are displayed
using alpha-blending which is supported by OpenGL.
There is one aspect that must be respected. In the
OpenGL rendering-pipeline, alpha blending is done as
part of the per-fragment operations. These operations
are the last ones being executed before the pixels are
written to the appropriate buffer. When painting the
alpha-blended surfaces, OpenGL does not take care
of their depth values. If they are inserted in the ren-
dering pipeline in the wrong order, this will lead to
an unrealistic output because an alpha-blended sur-
face that is rendered after another one with a smaller

depth will not be transparent. However it is easy to
avoid this problem if the programmer takes care of the
correct rendering order by himself. Thus, the blended
surfaces of the bounding boxes must be sorted, ac-
cording to their depth values before inserting them
into the rendering pipeline.

The HotSpots-class is responsible for the manage-
ment and visualization of the glass cases. It holds
some variables that are important to uniquely define
the position and the size of the bounding boxes. To
be able to obtain any additional information stored
about a HotSpot in a scene, a unique object-identifier
is needed as well. Additional information about how
to provide such object-identifiers in multiresolution
meshes can be found in [9].

With the knowledge of these data it is possible to
build a bounding box very easily, although the use
of alpha-blending makes this task a little difficult.
To prevent problems with the order of rendering, an
additional mechanism is needed, as it has been de-
scribed before. Moreover an interesting discovery can
be made. By looking at a box it is obvious that a
maximum of 3 faces can be seen at once. In other
cases 2 faces or even only 1 face can be seen. And it
is sufficient to render only the visible faces. But to
determine which faces are visible by the camera, the
camera-position is needed as well. So, the position
of the camera must be handed over when issuing the
render function. Another reason for doing this is the
fact, that the blended surfaces must be rendered in
the correct order, which can be achieved by sorting
them according to their distance to the camera. With
this additional knowledge, it is no problem to draw
the blended faces.

5 Test Data

The development of the navigation and metadata ca-
pability of the WebCAME -viewer happened indepen-
dently from the development of CAME. Therefore a
very simple and small dataset has been used during
the development phase. So, the functionality of Web-
CAME could be tested independently from the mul-
tiresolution database.

A textured triangle mesh representing a landscape
was created. The elevation data was obtained from a
heightmap grayscale picture with the size of 192×192
pixels (see in Figure 1(a)). Every pixel represents
a certain height according to its gray-value. The
brighter a pixel, the larger the vertex’ height value
must be. The triangle mesh is then overlaid with
the appropriate texture which has the same size of
192×192 pixels (see Figure 1(b)).

To test the HotSpots-Class, two simple objects have
been designed and stored as .ply-files. This file for-
mat has the advantage of being easily changeable with



(a) Heightmap used to create the ground sur-
face mesh

(b) Texture used for the ground surface

Figure 1: Heightmap and Texture used for the Terrain

(a) Cross on a summit (b) Uhrturm on Schlossberg in Graz, Austria

Figure 2: The two objects used for testing

a normal editor without having to use a special pro-
gram. It can be used to store indexed face sets that
may also contain texture information.

Figure 2(a) shows a cross as it is often seen on sum-
mits and Figure 2(b) shows a model of the Uhrturm
(a landmark on Schlossberg in Graz, Austria).

6 Results

In this section, some screenshots will be presented.
Figures 3 and 4 show WebCAME as web browser plu-
gin. Figures 5 and 6 present a look at the standalone
version which was used in the development phase.

6.1 WebCAME as Browser Plugin

One of the primary goals in the development of Web-
CAME was to implement it as browser plugin. This
has the advantage of being able to distribute a lot of
multimedia information quite easily by using existing
internet technology. In the following screenshots, the
rendering window shows original figures from the Mu-
rale database. The surrounding HTML-pages demon-
strate how the plugin can be embedded into an exist-
ing information system.

Figure 3(a) shows a basic web-page displaying a 3D
view of some artifacts in the left frame and further ex-
planations in the right frame. The thumbnail images
on the right side can be used to choose the object that
is shown in the left frame. Figure 3(b) demonstrates
the use of the wireframe mode combined with the abil-
ity to switch off textures. The difference between the



(a) Possible design of a webpage displaying HTML infor-
mation on the right side and the WebCAME plugin
to the left side.

(b) The same screenshot as Figure 3(a) but with textures
turned off and wireframe mode turned on.

Figure 3: Two screenshots of WebCAME embedded into a webpage as browser plugin

Figure 4: A detailed view of an artifact.

previous two examples shows the immense amount of
reality that is added to a scene by applying textures
to a relatively simple triangle mesh. In Figure 4, a
more detailed view of another artifact is presented.

6.2 WebCAME as

Standalone Application

During the development phase it was important to be
able to test the viewer independently from the mul-
tiresolution database. Thus, as mentioned before, a
set of test data has been created to easily demon-
strate the viewer’s abilities. Figure 5(a) presents a
first look to the scene with both test-objects visible.
In Figure 5(b), the Button “Choose Object” has been
pressed to show the HotSpots in the Scene. Thus,
the previously described virtual glass-cases are put
over the two test-objects. By clicking on the box
around the Uhrturm, which is located next to the
user’s position, the Object-Centered-Mode is enabled.
Figure 6(a) shows a view from this mode, where the
user can move around the object on the surface of the

imaginary sphere that has been described previously.
Finally, Figure 6(b) shows an overview of the scene
with activated wireframe mode and without textures.

7 Outlook

A status window will be integrated into the rendering
window. It can be used to assist the user by displaying
additional information. For example, hints about how
to navigate can be given. The information will be
overlaid using alpha-blending and will look like the
Head Up Displays (HUDs) known from many games.
Another interesting possibility is to assist the user
with orienting by displaying a small map similar to
the one presented in [20] and [21].

Until now, there is not yet any collision detection or
terrain tracking. These features will be implemented
in one of the future versions. An algorithm will have
to be designed to take care of updated geometry in-
formation, because the geometry is changed continu-
ously while viewing the scene. Object identifiers as
described in [9] will be used to differentiate between
terrain information and objects.

Another feature will be an intelligent automatic
speed control. The navigation speed thereby will be
set to appropriate values, depending on the surround-
ing geometry. This approach has been chosen to pre-
vent the user from getting confused by too many de-
grees of freedom.

It will be possible to grab an object for example
a vase or a piece of rock to examine it more closely.
The user may turn it around as if he would hold it
in his hands. This will be realized by an additional
“navigation mode”. It will be implemented using the
Arcball technology developed by Ken Shoemake (see
[22]). This technology has proven to be the most in-
tuitive one, concerning object orientation, in several
usability studies, for example in [23] or in [24].



(a) A screenshot of the standalone application,
which was used during the development phase,
showing the two test-objects.

(b) The same view as in Figure 5(a) but with
HotSpots turned on.

Figure 5: Two screenshots showing how interesting objects are indicated

(a) A screenshot that was made while in Object-

Centered-Mode.
(b) An overview of the scene in wireframe-mode

which shows the triangle mesh of the ground-
surface.

Figure 6: Another two screenshots of the standalone application

Finally, it is planned to port the viewer to ActiveX
technology to support Microsoft Internet Explorer.
This way of action has been chosen because IE is
the most commonly used web-browser, according to
statistics.

References

[1] J. Cosmas, T. Itegaki, D. Green, E. Grabczewski,
F. Weimer, L. Van Gool, A. Zalesny, F. L.
Desi Vanrintel, M. Grabner, K. Schindler,
K. Karner, M. Gervautz, S. Hynst, M. Waelkens,
M. Pollefeys, R. DeGeest, R. Sablatnig, and
M. Kampel, “3D MURALE: A Multimedia Sys-
tem for Archaeology,” in Proceedings ACM Vir-
tual Reality, Archaeology and Cultural Heritage
(VAST 2001), November 2001.

[2] R. Sablatnig and M. Kampel, “The virtual recon-
struction of an archaeological site - an overview
of the MURALE project,” in Proceedings of the
6th Computer Vision Winter Workshop 2001
(B. Likar, ed.), (Bled, Slovenia), pp. 60–70,
Slovenian Pattern Recognition Society, February
2001.

[3] J. Cosmas, T. Itegaki, D. Green, E. Grabczewski,
F. Weimer, L. Van Gool, A. Zalesny, F. L.
Desi Vanrintel, M. Grabner, K. Schindler,
K. Karner, M. Gervautz, S. Hynst, M. Waelkens,
M. Pollefeys, R. DeGeest, R. Sablatnig, and
M. Kampel, “A Novel Multimedia System for
Archaeology,” in Proceedings of Forum Interna-
tional de Musees, (Museum National d’Histoire
Naturelle, Paris, France), April 2002.



[4] Brunel University, London, “Home-
page of the 3D Murale Project.”
(http://www.brunel.ac.uk/project/murale/).

[5] The Web 3D Consortium, “The Virtual
Reality Modeling Language: International
Standard ISO/IEC 14772-1:1997,” 1997.
(http://www.web3d.org/).

[6] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk,
“The digital michelangelo project: 3D scanning
of large statues,” in Siggraph 2000, Computer
Graphics Proceedings (K. Akeley, ed.), pp. 131–
144, ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, 2000.

[7] M. Grabner, “Compressed adaptive multireso-
lution encoding,” Journal of WSCG, vol. 10,
pp. 195–202, Feb. 2002. ISSN 1213-6972.

[8] V. Abadjev, M. del Rosario, A. Lebedev,
A. Migdal, and V. Paskhaver, “Metastream,”
in Proceedings of the fourth symposium on Vir-
tual reality modeling language, (Paderborn, Ger-
many), pp. 53–62, ACM Press, 1999. ISBN 1-
58113-079-1.

[9] M. Grabner and H. Tschemmernegg, “Ob-
ject identification in compressed view-dependent
multiresolution meshes,” submitted for publica-
tion, 2003.

[10] D. S. Tan, G. G. Robertson, and M. Czerwin-
ski, “Exploring 3d navigation: combining speed-
coupled flying with orbiting,” in CHI, pp. 418–
425, 2001.

[11] F. Pittarello and A. Celentano, “A Multimodal
Approach for Orientation and Navigation in 3D
Scenes,” tech. rep., Universita Ca Foscari, Dipar-
timento di Informatica, 1999.

[12] K. Hinckley, R. Pausch, J. C. Goble, and N. F.
Kassell, “A survey of design issues in spatial in-
put,” in Proceedings of the 7th annual ACM sym-
posium on User interface software and technol-
ogy, (Marina del Rey, California, United States),
pp. 213–222, ACM Press, 1994. ISBN 0-89791-
657-3.

[13] R. P. Darken and J. L. Silbert, “A Toolset for
Navigation in Virtual Environments,” in Proceed-
ings of ACM User Interface Software & Technol-
ogy, 1993.

[14] C. Elcacho, T. Dingel, and R. Klein, “Object-
centered navigation in virtual construction appli-
cations,” in Proceedings of European Association

for Computer Graphics WSCG (V. Skala, ed.),
pp. 33–40, 2001.

[15] M. Grabner, “WebCAME: A Light-weight Mod-
ular Client/Server Multiresolution Rendering
System,” in Web3D 2003 Symposium Proceed-
ings (S. E. Spencer, ed.), (Saint Malo, France),
pp. 63–72, Mar. 2003. ISBN 1-58113-644-7.

[16] Trolltech, “Qt Reference Documentation.”
(http://doc.trolltech.com).

[17] Netscape, “Netscape Gecko Plug-in API.”
(http://devedge.netscape.com/

library/manuals/2002/plugin/1.0/).

[18] Trolltech, “Qt-based LiveConnect Plugins.”
(http://doc.trolltech.com/3.1/nsplugin.html).

[19] M. Woo, J. Neider, T. Davis, and D. Shreiner,
OpenGL Programming Guide. Addison-Wesley,
3rd ed., 1999. ISBN 0-201-60458-2.

[20] Y. Kitamura, S. Fukatsu, T. Masaki, and
F. Kishino, “Intuitive Navigation in an Enor-
mous Virtual Environment,” in Proceedings of
the International Conference on Artificial Real-
ity and Tele-Experience (ICAT), (Tokyo, Japan),
pp. 163–169, December 1998.

[21] S. Fukatsu, Y. Kitamura, T. Masaki, and
F. Kishino, “Intuitive control of “bird’s eye”
overview images for navigation in an enormous
virtual environment,” in Proceedings of the ACM
symposium on Virtual reality software and tech-
nology 1998, (Taipei, Taiwan), pp. 67–76, ACM
Press, 1998. ISBN 1-58113-019-8.

[22] K. Shoemake, “ARCBALL: A user interface for
specifying three-dimensional orientation using a
mouse,” in Proceedings of the Graphics Interface
’92, (Vancouver, Canada), pp. 151–156, 1992.

[23] K. Hinckley, J. Tullio, R. Pausch, D. Proffitt,
and N. Kassell, “Usability analysis of 3d rota-
tion techniques,” in Proceedings of the 10th an-
nual ACM symposium on User interface software
and technology, (Banff, Alberta, Canada), pp. 1–
10, ACM Press, 1997. ISBN 0-89791-881-9.

[24] F. Ritter, “Interaktives Zusammensetzen von
3D-Modellen zur Unterstuetzung des raeum-
lichen Verstaendnisses,” Master’s thesis, Otto-
von-Guericke Universitaet Magdeburg, 1999.


