
A Framework for Flexible, Hardware-Accelerated, and
High-Quality Volume Rendering

Christoph Berger∗

VRVis Research Center for Virtual Reality and Visualization
Vienna / Austria

http://www.VRVis.at/vis/

Abstract

Through the invention of new rendering algorithms and
an enormous development of graphics hardware in the
past it is now possible to perform interactive hardware-
accelerated high quality volume rendering as well as iso-
surface reconstruction on low cost standard PC graphics
hardware.
In this paper we introduce a flexible framework that sup-
ports the most common graphics adapters without addi-
tional need of setup as well as several vendor-dependent
OpenGL-extensions like pixel-, texture- and fragment-
shader. Additionally the framework integrates most re-
cent presented rendering techniques which significantly
improve image-quality as well as performance of standard
hardware based volume rendering (and iso-surface recon-
struction) approaches.
Special focus of the presented framework is concentrated
on splitting up the rendering process into several princi-
pal subtasks to provide easy reuse possibilities by only ex-
tending the appropriate modules without need to change
the overall rendering implementation.
The major objective of the prototype is to provide compar-
ison possibilities for several hardware accelerated volume
visualizations with respect to performance and quality.

1 Introduction

For visualization of volumetric data direct volume render-
ing [6, 7] is an important technique to get insight into data.
The key advantage of direct volume rendering over surface
rendering approaches is the potential to show the structure
of the value distribution throughout the volume. Due to
the fact that each volume sample contribution to the final
image is included, it is a challenge to convey that value
distribution simple and precisely.
Because of an enormous development of low-cost 3D
hardware accelerators in the last few years the features
supported by consumer-oriented graphics boards are also
very interesting for professional graphics developers. Es-
pecially NVIDIA’s [15] pixel- and texture shader and
ATI’s [13] fragment shader are powerful extensions to

∗christoph@vrvis.at

standard 2D and 3D texture mapping capabilities. There-
fore high-performance and high-quality volume rendering
at very low costs is now possible. Several approaches of
hardware-accelerated direct volume rendering have been
introduced to improve rendering speed and accuracy of vi-
sualization algorithms. Thus it is possible to provide inter-
active volume rendering on standard PC platforms and not
only on special-purpose hardware.
In this paper we present an application that includes sev-
eral different visualization algorithms for direct volume
rendering as well as direct iso-surface rendering. The
major objective of the prototype is to provide compari-
son possibilities for several hardware accelerated volume
visualizations with respect to performance and quality.
On startup of the software, the installed graphics adapter
is detected automatically and regarding to the supported
OpenGL-features the user can switch between the avail-
able rendering modes supported by the current graphics
hardware. The full functionality includes pre- and post
classification modes as well as pre-integrated classifica-
tion modes (see Section 3.2 and 3.3). All algorithms are
implemented exploiting both 2D or 3D texture mapping
as well as optional diffuse and specular lighting. Addi-
tionally we have adopted the high-quality reconstruction
technique based on PC-hardware, introduced by Hadwiger
et al. [4], to enhance the rendering quality through high-
quality filtering.
The major challenge is combining diverse approaches in
one simple understandable framework that supports sev-
eral graphics adapters which have to be programmed com-
pletely different and still provide portability for implemen-
tation of new algorithms and support of new hardware-
features.
The paper is structured as follows. Section 2 gives a short
overview of work that has been done on volume render-
ing and especially on hardware-accelerated methods. Sec-
tion 3 is then going to introduce the main topic, namely
volume rendering in hardware (texture based), providing a
brief overview of the major approaches and describing dif-
ferent classification techniques. In Section 4 we will then
discuss the implementation in detail, starting with the ba-
sic structure of our framework, afterwards describing the
differences between ATI and NVIDIA graphics adapters

and the implementation of several volume rendering tech-
niques as well as iso-surface reconstruction modes. This
section also covers some problems that have to be over-
come if supporting graphics adapters from different ven-
dors. Moreover the section includes some performance
issues and other application specific problems we encoun-
tered during prototype implementation. Section 5 summa-
rizes what we have presented and additionally some future
work that we are planning at the moment will be briefly
mentioned.

2 Related Work

Usually visualization approaches for scalar volume data
can be classified into indirect volume rendering, such as
iso-surface reconstruction, and direct volume rendering
techniques that immediately display the voxel data.
In contrast to indirect volume rendering, where an inter-
mediate representation through surface extraction methods
(e.g. the Marching Cube algorithm [8]) is generated and
then displayed, direct volume rendering uses the original
data. The basic idea of using object-aligned slices to sub-
stitute trilinear by bilinear interpolation was introduced by
Lacroute and Levoy [5], the ShearWarp algorithm.
The texture-based approach presented by Cabral [2] has
been expanded by Westermann and Ertl [16], who store
density values and corresponding gradients in texture
memory and exploit OpenGL extensions for unshaded vol-
ume rendering and shaded iso-surface rendering. Based
on their implementation, Meißner et al. [10] have ex-
tended the method to enable diffuse illumination for semi-
transparent volume rendering but resulting in a significant
loss in rendering performance.
Rezk-Salama et al. [11] presented a technique that sig-
nificantly improves both performance and image quality
of the 2D-texture based approach. But in contrast to the
techniques presented previously (all based on high-end
graphics workstations), they show how multi-texturing ca-
pabilities of modern consumer PC graphics boards are ex-
ploited to enable interactive volume visualization on low-
cost hardware. Furthermore they introduced methods for
using NVidia’s register combiner OpenGL extension for
fast shaded isosurfaces, interpolation and volume shading.
Engel at al. [3] extended the usage of low-cost hardware
and introduced a novel texture-based volume rendering
approach based on pre-integration (presented by Röttger,
Kraus and Ertl in [12]). This method provides high im-
age quality even for low-resolution volume data and non-
linear transfer functions with high frequencies by exploit-
ing multi-texturing, dependent textures and pixel-shading
operations, available on current programmable consumer
graphics hardware.

3 Hardware-Accelerated Volume
Rendering

This section gives a brief overview of general direct
volume rendering, especially the theoretical background.
Then we focus on how to exploit texture mapping hard-
ware for direct volume rendering purposes and afterwards
we discuss the varying classification methods that we
have implemented. Additionally we briefly mention the
hardware-accelerated filtering method, that we use for
quality enhancements.

3.1 Volume Rendering

Algorithms for direct volume rendering differ in the way
the complex problem of image generation is split up
into several subtasks. A common classification scheme
differentiates between image-order and object-order ap-
proaches. An example for an image-order method is
ray-casting, in contrast object-order methods are cell-
projection, shear-warp, splatting, or texture-based algo-
rithms.
In general all methods use an emission-absorption model
for the light transport. The common theme is an (approxi-
mate) evaluation of the volume rendering integral for each
pixel, in other words an integration of attenuated colors
(light emission) and extinction coefficients (light absorp-
tion) along each viewing ray. The viewing rayx(λ) is
parametrized by the distanceλ to the viewpoint. For any
pointx in space, color is emitted according to the function
c(x) and absorbed according to the functione(x). Then
the volume rendering integral is

I =
∫ D

0

c(x(λ)) exp

(
−
∫ λ

0

e(x(t))dt

)
dλ (1)

whereD is the maximum distance, in other words no color
is emitted forλ greater thanD.
For visualization of a continuous scalar field this integral
is not useful since calculation of emitted colors and ab-
sorption coefficients is not specified. Therefore in direct
volume rendering, the scalar value given at a sample point
is mapped to physical quantities that describe the emis-
sion and absorption of light at that point. This mapping is
calledclassification(classification will be discussed in de-
tail in Sections 3.2 and 3.3). This is usually performed by
introducing transfer functions for color emission and opac-
ity (absorption). For each scalar values = s(x) the trans-
fer function maps data values to colorC(s) and opacity
α(s) values. Additionally other parameters can influence
the color emission or opacity, e.g., ambient, diffuse and
specular lighting conditions or the gradient of the scalar
field (e.g. in [6]).
Calculating the color contribution of a point in space with
respect to the color value (through transfer function) and
all other parameters is calledshading.
Usually an analytical evaluation of the volume integral is

not possible. Therefore a numerical approximation of the
integral is calculated using a Riemann sum for n equal ray
segments of lengthd = D/n (see Section IV.A in [9]).
This technique results in the common approximation of
the volume rendering integral

I ≈
n∑

i=0

αiCi

i−1∏
j=0

(1− αj) (2)

which can be adapted for back-to-front compositing result-
ing in the following equation

C ′
i = αiCi + (1− αi)C ′

i+1 (3)

where nowαiCi corresponds toc(x(λ)) from the volume
rendering integral. The pre-multiplied colorαC is also
calledassociated color[1].
Due to the fact that a discrete approximation of the vol-
ume rendering integral is performed, according to the sam-
pling theorem, a correct reconstruction is only possible
with sampling rates larger than the Nyquist frequency. Be-
cause of the non-linearity of transfer functions (increases
Nyquist frequency for the sampling), it is not sufficient
to sample a volume with the Nyquist frequency of the
scalar field. This undersampling results in visual artifacts
that can only be avoided by very smooth transfer func-
tions. Section 3.3 gives a brief overview on a classifica-
tion method realizing an improved approximation of the
volume rendering.

3.2 Pre- and Post-Classification

As mentioned in the previous section classification has an
important part in direct volume rendering. Thus there are
different techniques to perform the computation ofC(s)
andα(s). In fact, volume data is presented by a 3D ar-
ray of sample points. According to sampling theory, a
continuous signal can be reconstructed from these sam-
pling points by convolution with an appropriate filter ker-
nel. The order of the reconstruction and the application of
the transfer function defines the difference between pre-
and post-classification, which leads to remarkable differ-
ent visual results.
Pre-classification denotes the application of the transfer
function to the discrete sample points before the data in-
terpolation step. In other words the color and absorption
are calculated in a pre-processing step for each sampling
point and then used to interpolateC(s) andα(s) for the
computation of the volume rendering integral.
On the other side post-classification reverses the order of
operations. This type of classification is characterized by
the application of the transfer function after the interpola-
tion of s(x) from the scalar values of the discrete sampling
points. The results of both pre- and post-classification can
be compared in Figure 1.

Figure 1: Direct volume rendering without illumina-
tion, pre-classified (left), post-classified (middle) and pre-
integrated (right)

3.3 Pre-Integrated Classification
As discussed at the end of Section 3.1 to gather better vi-
sual results, the approximation of the volume rendering
integral has to be improved. Röttger et al. [12] presented a
pre-integrated classification method that has been adapted
for hardware accelerated direct volume rendering by En-
gel et al. [3]. The main idea of pre-integrated classifica-
tion is to split the numerical integration process. Separate
integration of the continuous scalar field and the transfer
functions is performed to cope with the problematic of the
Nyquist frequency.
In more detail, for each linear segment one table lookup
is executed, where each segment is defined by the scalar
value at the start of the segmentsf , the scalar value at the
end of the segmentsb and the length of the segmentd. The
opacityαi of thei-th line segment is approximated by

αi = 1− exp

(
−
∫ (i+1)d

id

τ (s (x(λ))) dλ

)
≈ 1− exp

(
−
∫ 1

0

τ((1− ω)sf + ωsb)d dω

)
. (4)

Analogously the associated color̃Cτ
i (based on a non-

associated color transfer function) is computed through

C̃τ
i ≈

∫ 1

0

τ((1− ω)sf + ωsb)c((1− ω)sf + ωsb) (5)

× exp

(
−
∫ ω

0

τ((1− ω′)sf + ω′sb)d dω′
)

d dω.

Both functions are dependent onsf , sb, and d (only if
lengths of the segments are not equal). Because pre-
integrated classification always computes associated col-
ors,αiCi in equation (2) has to be substituted byC̃τ

i .
Through this principle the sampling rate does not depend
anymore on the non-linearity of transfer functions, re-
sulting in less undersampling artifacts. Therefore, pre-
integrated classification has two advantages, first it im-
proves the accuracy of the visual results, and second fewer
samples are required to achieve equal results regarding to
the other presented classification methods.
The major drawback of this approach is that the lookup
tables must be recomputed every time the transfer func-
tion changes. Therefore, the pre-integration step should
be very fast. Engel et al. [3] proposes to assume a con-
stant length of the segments and the usage of integral func-

tions forτ(s) andτ(s)c(s) the evaluation of the integrals
in equations (4) and (5) can be greatly accelerated. Adapt-
ing this idea results in the following approximation of the
opacity and the associated color

α(sf , sb, d) ≈ 1− exp

(
− d

sb − sf
(T (sb)− T (sf))

)
C̃τ (sf , sb, d) ≈ d

sb − sf
(Kτ (sb)−Kτ (sf)) (6)

with the integral functionsT (s) =
∫ s

0
τ(s)ds and

Kτ (s) =
∫ s

0
τ(s)c(s)ds. Thus, the numerical computing

for producing the lookup tables can be minimized by only
calculating the integral functionsT (s) and Kτ (s). Af-
terwards computing the colors and opacities according to
equations (6) can be done without any further integration.
This pre-calculation can be done in very short time, so pro-
viding interactivity in transfer-function changes. The qual-
ity enhancement of pre-integrated classification in com-
parison to pre- and post-classification can be seen in Fig-
ure 1.

3.4 Texture Based Volume Rendering

Basically there are two different approaches how hardware
acceleration can be used to perform volume rendering.

3D texture-mapped volume rendering

If 3D-textures are supported by the hardware (like
on the ATI-Radeon family [13] or the NVIDIA GeForce
3 and 4 [15]) it is possible to download the whole
volume data set as one single three-dimensional texture to
hardware. Because hardware is able to perform trilinear
interpolation within the volume, it is possible to render a
stack of viewport-aligned polygon slices orthogonal to the
current viewing direction (see Figure 2, left).
This viewport-aligned slice stack has to be recomputed
every time, the viewing position changes. Finally, in the
compositing step, the textured polygons are blended onto
the image-plane in a back-to-front order. This is done by
using the alpha-blending capability of computer graphics
hardware which usually results in a semitransparent view
of the volume. In order to obtain equivalent representa-
tions while changing the number of slices, opacity values

Figure 2: Alignment of texture slices for 3D texturing on
the left, and 2D texturing on the right (image from Rezk-
Salama et al. [11])

have to be adapted according to the slice distance.

2D texture-mapped volume rendering

If hardware does not support 3D texturing, 2D texture
mapping capabilities can be used for volume rendering.
In this case, the polygon slices are set orthogonal to
the principal viewing axes of the rectilinear data grid.
Therefore if the the viewing direction changes by more
than 90 degrees, the orientation of the slice normal has
to be changed. This requires that the volume has to be
represented through three stacks of slices, one for each
slicing direction respectively (see Figure 2, right).
2D texturing hardware does not have the ability to per-
form trilinear interpolation (as performed by 3D texturing
hardware), so it is substituted by bilinear interpolation
within each slice, which is supported by hardware. This
results in strong visual artifacts due to the fact of the
missing spatial interpolation. Another major drawback of
this approach in contrast to the previous one is the high
memory requirements, because 3 instances of the volume
data set have to be hold in memory. To obtain equivalent
representations, the opacity values have to be adopted
according to the slice distance between adjacent slices in
direction of the viewing ray.

3.5 High-Quality Filtering

Commodity graphics hardware can also be exploited to
achieve hardware-accelerated high-quality filtering with
arbitrary filter kernels, as introduced by Hadwiger et al.
[4]. In this approach filtering of input data is done by con-
volving it with an arbitrary filter kernel stored in multiple
texture maps. As usual, the base is the evaluation of the
well-known filter convolution sum

g(x) = (f ∗ h)(x) =
bxc+m∑

i=bxc−m+1

f [i]h(x− i) (7)

this equation describes a convolution of the discrete in-
put samplesf [i] with a reconstruction filerh(x) of (finite)
half-widthm.
To be able to exploit standard graphics hardware to per-
form this computation, the standard evaluation order (as
used in software-based filtering) has to be reordered. In-
stead of gathering all input sample contributions within the
kernel width neighborhood of a single input sample, this
method distributes all single input sample contributions to
all relevant output samples. The input sample function is
stored in a single texture and the filter kernel in multiple
textures. Kernel textures are scaled to cover exactly the
contributing samples. The number of contributing sam-
ples is equal to the kernel width. To be able to perform the
same operation for all samples at one time, the kernel has
to be divided into several parts, to cover always only one
input sample width. Such parts are called filter tiles.

Instead of imagining the filter kernel being centered at the
”current” output sample location, an identical mapping of
input samples to filter values can be achieved by replicat-
ing a single filter tile mirrored in all dimensions repeatedly
over the output sample grid. The scale of this mapping is
chosen, so that the size of a single tile corresponds to the
width from one input sample to the next.
The calculation of the contribution of a single specific fil-
ter tile to all output samples is done in a single rendering
pass. So the number of passes necessary is equal to the
number of filter tiles the filter kernel used consists of. Due
to the fact that only a single filter tile is needed during a
single rendering pass, all tiles are stored and downloaded
to the graphics hardware as separate textures. If a given
hardware architecture is able to support2n textures at the
same time, the number of passes can be reduced by n.
This method can be applied for volume rendering purposes
by switching between two rendering contexts. One for the
filtering and one for the rendering algorithm, whereas first
a textured slice is filtered according to the just described
method, and afterwards the filtered output is then used in
the standard volume rendering pipeline. This is not as easy
as it sounds, thus implementation difficulties are described
in more detail in section 4.1. For results see Figure 3.

Figure 3: Pre-integrated classification without pre-filtered
slices (left) and applying hardware-accelerated filtering
(right).

4 Implementation

Our current implementation is based on a graphical user
interface programmed in java, and a rendering library
written in c++. For proper usage of the c++ library in java,
e.g. for parameter passing, we exploit the functionality of
the java native interface, which describes how to integrate
native code within programs written in java. Due to the
fact that our implementation is based on the OpenGL API,
we need a library that maps the whole functionality of the
native OpenGL library of the underlying operating system
to java. Therefore we use the GL4Java library [14]. The
following detailed implementation description will only
cover the structure of the c++ rendering library, because
all rendering functionality is encapsulated there.

On startup of the framework, the graphics adapter cur-
rently installed in the system is detected automatically.
Regarding to the OpenGL extensions that are supported
by the actual hardware the rendering modes that are
not possible are disabled. Through this procedure, the
framework is able to support a lot of different types of
graphics adapters without changing the implementation.
Anyway the framework is primarily based on graphics
chips from NVidia and from ATI, because the OpenGL-
extensions provided by these two vendors are very
powerful features, which can be exploited very well for
diverse direct volume rendering techniques. Minimum
requirements for our application are multi-texturing
capabilities. Full functionality includes the exploitation
of the so calledtexture shaderOpenGL extension and
the register combinersprovided by NVidia as well as the
fragment shaderextension, provided by ATI.
Basically the texture based volume rendering process
can be split up into several principal subtasks. Each of
these tasks is realized in one or more modules, to provide
easy reuse possibilities. Therefore the implementation of
new algorithms and the support of new hardware-features
(OpenGL-extensions) is very simple by only extending
these modules with additional functionality. The overall
rendering implementation need not to be changed to
achieve support of new techniques or new graphics chips.

Texture definition

As described in section 3.4, in the beginning of the
rendering process the scalar volume data must be down-
loaded to the hardware. According to the selected
rendering mode, this is either be done as one single three-
dimensional texture or as three stacks of two-dimensional
textures.
The selected rendering mode additionally specifies the
texture format. In our context texture format means,
what values are presented in a texture. Normally, RGBA
(Red, green, blue and alpha component) color values
are stored in a texture, but in volume rendering, other
information as the volume gradient or the density value
have to be accessed during the rasterization stage. For
gradient vector reconstruction, we have implemented a
central-difference filter and additionally a sobel-operator,
which results in a great quality enhancement in contrast
to the central-difference method, avoiding severe shading
artifacts (see Figure 4).

When performing shading calculations, RGBA textures
are usually employed, that contain the volume gradient
in the RGB components and the volume scalar in the
ALPHA component. As in pre-integrated rendering
modes the scalar data has to be available in the first
three components of the color vector, it is stored in
the RED component. The first gradient component is
stored in the ALPHA component in return. Another
exception occurs for rendering modes, which are based
on gradient-weighted opacity scaling, where the gradient

Figure 4: Gradient reconstruction using a central-
difference filter (left) and avoiding the shading artifacts
(black holes) by using a sobel-operator (right)

magnitude is stored in the ALPHA component. Through
the limitation of only four available color components,
it is trivial that for the combination of some rendering
modes it is not possible to store all the required values for
a single slice in only one texture.

Projection

The geometry used for direct volume rendering, in
contrast to other methods, e.g. iso-surface extraction, is
usually very simple. Due to the fact that texture-based
volume rendering algorithms usually perform slicing
through a volume, the geometry only consists of one
quadrilateral polygon for each slice. To obtain correct
volume information for each slice, each polygon has to
be bound to the corresponding textures that are required
for the actual rendering mode. In addition, the texture
coordinates have to be calculated accordingly. Usually
this is a very simple task.
Just for 2D-texture based pre-integrated classification
modes, it is a little bit more complex. Instead of the
general slice-by-slice approach, this algorithm renders
slab-by-slab (see Figure 5) from back to front into the
frame buffer. A single polygon is rendered for each slab
with the front and the back texture as texture maps. To
have texels along all viewing rays projected upon each
other for the texel fetch operation, the back slice must
be projected onto the front slice. This projection is per-
formed by adapting texture coordinates for the projected
texture slice, which always depends on the actual viewing
position.

Compositing

Usually in hardware accelerated direct volume ren-
dering approaches, the approximation of the volume
rendering integral is done by back-to-front compositing
of the rendered quadriliteral polygon slices. This should
be performed according to equation (3). In general
this is achieved by blending the slices into the frame
buffer with the OpenGL blending functionglBlend-

Figure 5: A slab of the volume between two slices. The
scalar values on the front and on the back slice for a par-
ticular viewing ray are calledsf andsb (image from Engel
et al. [3])

Func(GL ONE,GL ONE MINUS SRCALPHA).
This is a correct evaluation only, if the color-values
computed by the rasterization stage are associated
colors. If they are not pre-multiplied (e.g. gradient-
weighted opacity modes produce non-associated
colors), then the blending function must beglBlend-
Func(GL SRCALPHA,GL ONE MINUS SRCALPHA).
Iso-surface reconstruction in hardware is in general ac-
complished by cleverly exploiting the OpenGL alpha-test
(e.g. glAlphaFunc(GL GREATER, 0.4)) to display the
specified isovalues only.
These two techniques can be combined for rendering
semi-transparent iso-surfaces (see Figure 6, left), where
the alpha-test is used for rejecting all fragments not
belonging to an iso-surface, and afterwards the slices
are blended into the frame buffer, as described above. A
detailed description of iso-surface reconstruction follows
in Section 4.1.

Register settings

Depending on the selected rendering mode, during
the rasterization process, the actual performed rendering
technique often needs more input data than available
through the slice textures (in general hold gradient and/or
density information). For shading calculations the direc-
tion of the light source must be known. When modelling
specular reflection the rasterization stage requires not only
the light direction, but also the direction to the viewer’s
eye, because a halfway vector is used to approximate
the intensity of specular reflection. Additionally some
rendering modes need to access specific constant vectors,
to perform dot-products for gradient reconstruction for
example. This information has to be stored at a proper
place. Therefore NVidia and ATI provide some special
registers which can be accessed during rasterization

Figure 6: Semi-transparent iso-surface rendering (left) and
pre-integrated volume rendering (right) of different human
head data sets.

process when using theregister combinersextension or
thefragment shaderextension.
The register combinersextension, as described in [11], is
able to access two constant color registers (in addition to
the primary and secondary color), which is not sufficient
for complex rendering algorithms. In the GeForce3
graphics chip, NVidia has extended the register han-
dling by introducing theregister combiners2extension,
providing per-combiner constant color registers. This
means that each combiner-stage has access to its own two
constant registers, so the maximum number of additional
information, provided by RGBA vectors, is the number of
combiner stages multiplied by two, respectively sixteen
on GeForce3. In contrast all ATI graphics chips (e.g.
Radeon 8500, ...), that support the OpenGLfragment
shaderextension provide access to an equal number of
constant registers, namely eight.
Due to the fact that miscellaneous rendering modes need
different information contained in the constant registers,
the process of packing the required data into the correct
registers is more complex than it sounds. In addition these
constant settings intensely influence the programming
of the rasterization stage, where each different register
setting requires a new implementation of the rasterization
process.

4.1 NVIDIA vs. ATI

As mentioned above our current implementation supports
several graphics chips from NVidia as well as several
graphics chips from ATI. In this section we discuss the
differences between realizations of several rendering
algorithms according to the hardware-features supported
by NVidia and ATI. The main focus is set on the pro-
gramming of the flexible rasterization hardware, enabling
advanced rendering techniques like per pixel-lighting or
advanced texture-fetch methods. The differences will
be discussed in detail by showing some implementation
details for some concrete rendering modes after giving an
short overview of rasterization hardware differences in

OpenGL.
In general the flexible rasterization hardware consists of
multi-texturing capabilities (allowing one polygon to be
textured with image information obtained from multiple
textures), multi-stage rasterization (allowing to explicitly
control how color-, opacity- and texture-components
are combined to form the resulting fragment,per-pixel
shading) and dependent texture address modification
(allowing to perform diverse mathematical operations on
texture coordinates and to use these results for another
texture lookup).

NVidia

On graphics hardware with an NVidia chip, this
flexibility is provided through several OpenGL ex-
tensions, mainly GL REGISTERCOMBINERSNV and
GL TEXTURE SHADER NV. When theregister combiners
extension is enabled, the standard OpenGL texturing
units are completely bypassed and substituted by a
register-based rasterization unit. This unit consists of two
(eight on GeForce3,4) general combiner stages and one
final combiner stage.
Per-fragment information is stored in a set of input
registers, and these can be combined, i.e. by dot product
or component-wise weighted sum, the results are scaled
and biased and finally written to arbitrary output registers.
The output registers of the first combiner stage are then
input registers for the next stage, and so on.
When the per-stage-constantsextension is enabled
(GL PERSTAGE CONSTANTSNV), for each combiner
stage two additional registers are available, that can hold
arbitrary data, otherwise two additional registers are
available too, but with equal contents for every stage.
The texture shaderextension provides a superset of
conventional OpenGL texture addressing. It provides
a number of operations that can be used to compute
texture coordinates per-fragment rather than using simple
interpolated per-vertex coordinates. The shader opera-
tions include for example standard texture access modes,
dependent texture lookup (using the result from a previous
texture stage to affect the lookup of the current stages),
dot product texture access (performing dot products from
texture coordinates and a vector derived from a previous
stage) and several special modes.
The implementation of these extensions results in a lot of
code, because the stages have to be configured properly,
and an assembler like programming is not provided.

ATI

On graphics hardware with an ATI Radeon chip,
this flexibility is provided through one OpenGL extension,
GL FRAGMENT SHADER ATI . Generally this extension
is very similar to the the extensions described before, but
encapsulates the whole functionality in a single extension.
The fragment shaderextension inserts a flexible per-pixel

programming model into the graphics pipeline in place of
the traditional multi-texture pipeline. It provides a very
general means of expressing fragment color blending and
dependent texture address modification.
The programming model is a register-based model and
the number of instructions, texture lookups, read/write
registers and constants is queryable. E.g. on the ATI
Radeon 8500 there are six texture fetch operations and
eight instructions possible, both two times during one
rendering pass, yielding maximum of sixteen instructions
in total.
One advantageous property of the model is a unified in-
struction set used throughout the shader. That is, the same
instructions are provided when operating on address or
color data. Additionally, this unified approach simplifies
programming (in contrast to the above presented NVidia
extensions), because only a single instruction set has to
be used and thefragment shadercan be programmed
comparable to an assembler language.
This tremendously reduces the amount of produced code
and therefore accelerates and simplifies debugging. For
these reasons and because up to six textures are supported
by the multi-texturing environment, ATI graphics chips
provide powerful hardware features to perform hardware-
accelerated high-quality volume rendering.

Pre- and Post-classification

As described in detail in Section 3.2, pre- and post-
classification differ in the order of the reconstruction step
and the application of the transfer function.
Since most NVidia graphics chips sup-
port paletted textures (OpenGL extension
GL SHARED TEXTURE PALETTE EXT), pre-classified
volume rendering is easy to implement.Paletted textures
means that instead of RGBA or luminance, the internal
format of a texture is an index to a color-palette, repre-
senting the mapping of a scalar value to a color (defined
by transfer-function). This lookup is performed before
the texture fetch operation (before the interpolation), thus
pre-classified volume rendering is performed. Since there
is no similar OpenGL-extension supported by ATI graph-
ics chips, rendering modes, based on pre-classification are
not available on ATI hardware.
Post-classification is available on graphics-chips from
both vendors, in case that advanced texture-fetch possi-
bilities are available. As described in the beginning of
this section when using thetexture-andfragment-shader,
dependent texture lookups can be performed. This feature
is exploited for post-classification purposes. The transfer
function is downloaded as a one-dimensional texture
and for each texel, fetched by the given per-fragment
texture coordinates, the scalar value is used as a lookup
coordinate into the dependent 1D transfer-function
texture. Thus post-classification is available, because
the scalar value obtained from the first texture fetch has
been bi- or trilinearly filtered, dependent on whether

Figure 7: Dependent textures for multiple iso-surfacing
(left) and pre-integrated classification (right)

2D or 3D volume-data textures are employed, and the
transfer-function is applied afterwards.

Pre-integration

As post-classification, pre-integrated classification
can also be performed on graphics-chips from both
vendors iftexture shadingis available. The pre-integrated
transfer-function, since dependent on two scalar values
(sf from the front andsb from the back slice, see Figure
5 and Section 3.3 for details) is downloaded as a two-
dimensional texture, containing pre-integrated color and
opacity values for each of the possible combinations of
front and back scalar values.
For each fragment, texels of two adjacent slices along
each ray through the volume are projected onto each other.
Then the two fetched texels are used as texture coordinates
for a dependent texture lookup into the 2D pre-integration
texture. To extract the scalar values, usually stored in
the red component of the texture, the dot product with a
constant vectorv = (1, 0, 0)T is applied. These values are
then used for the lookup and the resulting fetched texel
is then used for lighting calculations. An example of a
pre-integration dependent texture is shown in Figure 7.

Iso-surface reconstruction

The standard approach to render single iso-surfaces
(as proposed by Westermann and Ertl [16]) without ex-
tracting any polygonal representation cleverly exploits the
OpenGL alpha test. If the texture describing the volume
contains the volume density in its alpha component,
the volume is then rendered into the frame buffer using
the alpha-test to compare the data value with a specified
iso-value. Through this procedure a voxel is only rendered
if its density value is, e.g., larger or equal to the iso-value,
limiting the number of possible iso-surfaces to only one
non-transparent.
Multi-stage rasterization is then exploited to perform
shading with multiple light-sources as well as the addition
of ambient lighting. The voxel gradient is stored in
the RGB components of the texture and the available

Figure 8: Register combiner setup for shaded isosurfaces
(image from Rezk-Salama et al. [11])

dot product is used to calculate the light intensity. The
possibility of using colored light sources is also pro-
vided. If only 2D textures are available the approach of
Rezk-Salama et al. [11] to produce intermediate slices on
the fly can be combined with iso-surface reconstruction,
resulting in better image quality. Figure 8 shows a sample
register combinersetup.

The presented usage of dependent texture lookups can
also be employed to render multiple isosurfaces. The
basic idea is to color each ray segment according to
the first isosurface intersected by the ray segment. So
the dependent texture contains color, transparency, and
interpolation values (IP = (siso−sf)/(sb−sf)) for each
combination of back and front scalar. To differ between
ray segments that do or do not intersect an isosurface
an interpolation value of 0 is stored for ray segments
not intersecting an isosurface. The interpolation values
are then stored in the alpha channel in the range 128 to
255 and the alpha-test is used again to discard voxels
not belonging to an isosurface. For lighting purposes
the gradient of the front and back slice has to be rebuilt
in the RGB components and the two gradients have to
be interpolated depending on the given isovalue. The
implementation of this reconstruction usingregister
combinersis shown in Figure 9.
The main disadvantage of this method is that the trans-
parency, which is usually freely definable for each
isosurface’s back and front face, is now constant for all
isosurfaces’ faces. This problem can be overcome by
storing the interpolation values in the blue component
of the dependent texture. Now the transparency for each
isosurface can be freely defined but the blue color channel
has to be filled with a constant value that is equal for
all isosurfaces’ back and front faces. The alpha test is
exploited by assigning 0.0 to the alpha channel of each
texel not belonging to an isosurface. Figure 7 shows a
dependent texture for multiple isosurfaces.

4.2 Problems

When applying the hardware accelerated high quality fil-
tering method (see Section 3.5) in combination with an
arbitrary rendering mode, we have to cope with different

Figure 9: Register combiner setup for gradient reconstruc-
tion and interpolation with interpolation values stored in
alpha (image from Engel et al. [3])

rendering contexts. One context for the rendering algo-
rithm and one for the high quality filtering. A single slice
is rendered into a buffer, this result is then used in the fil-
tering context to apply the specified filtering method (e.g.
bi-cubic), and this result is then moved back into the ren-
dering context, to perform the compositing step. More dif-
ficult is the case of combining the filtering with preinte-
gration, where two slices have to be switched between the
rendering contexts. Through different contexts the geom-
etry and the OpenGL state handling is varying depending
on whether filtering is applied or not. It is a challenge to
define and provide the correct data in the right context and
not mixing up the complex state handling. Although the
performance is not so high, the resulting visualizations are
very convincing (see Figure 3).
Another problem that occurs when realizing such a large
framework is that the performance that usually is achieved
by the varying algorithms can not be guaranteed. We
tested our framework on a NVIDIA Geforce3 graphics
board. For direct volume rendering (all possible fea-
tures enabled) of a volume with a resolution of1283 we
achieved ca 12 fps for pre-, 10 fps for post- and 6 fps for
pre-integrated classification. For a volume with a reso-
lution of 2563 we achieved ca 5 fps for pre-, 4.5 fps for
post- and 4 fps for pre-integrated classification. For iso-
surface rendering of a volume with a resolution of1283

we achieved ca 12 fps for the standard and 6 fps for the
dependent texture approach. For a volume with a resolu-
tion of 2563 ca 4 fps for the standard and 1 fps for the
dependent texture approach.
Furthermore when performing shading, rendering datasets
with dimensions over2563 results in a heavy performance
loss, caused by the memory bottle neck. Which means that
not the whole data set can be downloaded to the graphics
adapter memory, instead of, the textures are transferred be-
tween the main and the graphics memory.

5 Conclusions and Future Work

On the basis of standard 2D- and 3D-texture based vol-
ume rendering and several high quality rendering tech-
niques, we have presented a flexible framework, which in-
tegrates several different direct volume rendering and iso-
surface reconstruction techniques that exploit rasterization
hardware of PC graphics boards in order to significantly
improve both performance and image quality. Addition-
ally the framework can easily be extended with respect
to support of new OpenGL extensions and implementa-
tion of new rendering algorithms, by only expanding the
proper modules. The framework supports most current
low-cost graphics hardware and provides comparison pos-
sibilities for several hardware-accelerated volume visual-
izations with regard to performance and quality.
In the future we plan the integration of non-photorealistic
rendering techniques to enhance volume visualizations. To
overcome the problem that different graphics chips require
different implementations, we will try the usage of a high-
level shading language.

6 Acknowledgements

This work was carried out as part of the basic research
on visualization (http://www.VRVis.at/vis/) at the VRVis
Research Center Vienna, Austria (http://www.VRVis.at/),
which is funded by an Austrian governmental research
project called Kplus.
Special thanks to Markus Hadwiger and Helwig Hauser
for patient supervision.

References

[1] James F. Blinn. Jim Blinn’s corner: Compositing. 1.
Theory.IEEE Computer Graphics and Applications,
14(5):83–87, September 1994.

[2] Brian Cabral, Nancy Cam, and Jim Foran. Acceler-
ated volume rendering and tomographic reconstruc-
tion using texture mapping hardware. In1994 Sym-
posium on Volume Visualization, pages 91–98. ACM
SIGGRAPH, October 1994.

[3] Klaus Engel, Martin Kraus, and Thomas Ertl.
High-quality pre-integrated volume rendering using
hardware-accelerated pixel shading. InProceedings
of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on on Graphics hardware, pages 9–16. ACM
Press, 2001.

[4] Markus Hadwiger, Thomas Theußl, Helwig Hauser,
and Eduard Gr̈oller. Hardware-accelerated high-
quality reconstruction on PC hardware. InPro-
ceedings of the Vision Modeling and Visualization
Conference 2001 (VMV-01), pages 105–112, Berlin,
November 21–23 2001. Aka GmbH.

[5] Philippe Lacroute and Marc Levoy. Fast volume ren-
dering using a shear-warp factorization of the view-
ing transformation.Computer Graphics, 28(Annual
Conference Series):451–458, July 1994.

[6] Marc Levoy. Display of surfaces from volume
data. IEEE Computer Graphics and Applications,
8(3):29–37, May 1988.

[7] Marc Levoy. Efficient ray tracing of volume data.
ACM Transactions on Graphics, 9(3):245–261, July
1990.

[8] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution3D surface construction
algorithm.Computer Graphics, 21(4):163–169, July
1987.

[9] Nelson Max. Optical models for direct volume ren-
dering. IEEE Transactions on Visualization and
Computer Graphics, 1(2):99–108, June 1995. ISSN
1077-2626.

[10] Michael Meißner, Ulrich Hoffmann, and Wolfgang
Straßer. Enabling classification and shading for
3D texture mapping based volume rendering using
openGL and extensions. InIEEE Visualization ’99,
pages 207–214, San Francisco, 1999. IEEE.

[11] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner,
and T. Ertl. Interactive volume rendering on stan-
dard PC graphics hardware using multi-textures and
multi-stage rasterization. pages 109–118.

[12] Stefan R̈ottger, Martin Kraus, and Thomas Ertl.
Hardware-accelerated volume and isosurface render-
ing based on cell-projection. pages 109–116. IEEE
Computer Society Technical Committee on Com-
puter Graphics, 2000.

[13] ATI web page. http://www.ati.com/.

[14] Jausoft GL4JAVA web page.
http://www.jausoft.com/gl4java.html/.

[15] NVIDIA web page. http://www.nvidia.com/.

[16] Rüdiger Westermann and Thomas Ertl. Efficiently
using graphics hardware in volume rendering appli-
cations. InSIGGRAPH 98 Conference Proceedings,
Annual Conference Series, pages 169–178. ACM
SIGGRAPH, Addison Wesley, July 1998.

