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Abstract

Modelins technivue based on sweerins is introduced. Generalizations of solids of revolution by axis
bendins. usase of multirle axes and usase of various metrics are rresented. Generalized solids of
revolution are 2 5D ob.ects and derendins on inrut rarameters. they may contain sars. Constrained
variants offer additional modelin® vossibilities and easier inrut. Finally some examrles are siven.
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1. Introduction

Durins evolution of seometric modelins. several modeling technivues were develored. In many
cases. the soal was to rrovide not too comrlex technivue for rarid modelins of non trivial models.
Some of them are well known and widely srread. This includes such technidues as CSG. fractals.
varticle systems or sweevrins. This rarer deals with sweerins. or strictly sreakins with srecial subset
of sweering seneralized solids of revolution.

Sweerins technidue moves an ob.ect (called share or cross section) alons arbitrary curve (called
rath) [Grat89]. A tail that rrofile leaves while is movins lor mathematically more precisely: union
alons all rositions) creates resulting solid. The term obJect was used intentionally. Tt can be a
three dimensional solid. two dimensional filled share or any curve (or roint. if you wish unusual way
of visualizing a rath) Share and orientation of ob.ect can chanse durins sweerins. Derendins on
swert ob.ect. result of sweerin® can be in volumetric or boundary rerresentation (or it is [ust a
simple ratch)

While seneral sweerins idea sives us wide ranse of vrossibilities. it is difficult to model. Therefore
stecial cases of sweering are more widely srread. The simrlest variant of sweering is extrude.
Two dimensional share (usually rerresented by boundary curve) is swert alons line and is not
rotated or chansed More comvrlex is rath extrude Path can be any curve and swert ob.ect. while
not chansins share. can even stay unrotated or rotate to be rerrendicular to rath. Even more
comrlex shares can be created by lofting/skinning arrroach. Alons rath. there are several key
vositions where share of swert ob.ect is defined. Between two key vositions. shave is interrolated.
Usual behavior is to rotate it to be rverrendicular to rath.

In all rrevious versions. closed rath was an excertion. Lathe (or solid of revolution) uses circular
rath to create three dimensional ob.ects. Two dimensional shavre is always rerrendicular to rath.
Usual descrirtion of lathe ob.ects uses axis instead of circular rath. Center of rath belonss to axis
and rlane created by rath is rerrendicular to axis.

One remark is needed at this rlace. Namins conventions of sweerins techniques are not
consistent. One technique can have several names and there is some small variability what exactly the
technivue with arbitrary name allows. For examvle in .Smed02]. above described technivues extrude.
rvath extrude and lathe are noticed. In _Povr02l alons with name lathe. also term surface of



revolution is used. In this rarer. the term solid of revolution is rreferred for the technivue earlier
mentioned as lathe.

In a followins text. only surface model is used (unless exvlicitly stated otherwise). Althoush solids
of revolution can be defined to allow rotation by ansle less than 360 desrees. in this ravrer only full
360 desrees rotation is discussed.

2. Generalization

Before we start to exvlore ways of their seneralization. we will take a closer look at solids of
revolution itself There is one axis and one curve on the inrut side and one solid of revolution on the
outrut side. The curve is two dimensional Tn common set ur. axis is one of the main axis of
coordinate system (usually z) and curve is located in xz rlane (often only in half vlane with rositive
x coordinates). By rotation of vlane xz around z axis. curve follows circular rath. In other words.
every point of curve creates circle in rlane rerrendicular to axis. Such vplanes are later referred as
slicins vlanes or slices.

To summarize basic construction scheme (that will later be seneralized): Given an axis and a
curve to rotate. make slicins rlanes (rlanes rerrvendicular to axis). Create circle from each
intersection of slicins rlane and curve. Centers of circles lie on axis.

Generalization itself can be divided into several stases (next three charters).

2.1 Axis Bendins

The first seneralization comes in form of bent axis. Slicinas vlanes are no more rarallel. but rather
rerrendicular to axis (fisure | shows bent axis and several slicins vlanes) Creatins circles in slicins
vlanes follows the same rules as solids of revolution are usins [Ferk00].

Fis. 1: Bent axis and slicins rlanes. Fis. 2: Selfintersections due bendins.

Allowins for bent axis. we resisn to straishtforward control of selfintersections. Solid of
revolution can have selfintersections only if rotated curve has selfintersections. Neishborins slicins
rlanes intersect. Area of intersection is determined by curvature of axis. Everythins inside of radius
of curvature in certain slicing rlane cannot rroduce intersections due bendins Selfintersections are
rresent at inner side of curvature (see cut of ob.ect at fisure 2).

2.2 Multivle Axes

Center of circlels) in slicins rlane is a roint of intersection between slicins rlane and the axis. What
harrens when we use more than one axis? There can be more intersections of slicing rlane and axes.
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Formula 1: DeJnition oJ seneralized conics.
Xis any roint oJcurve. F, are Joci. w; is weisht
oJ bocus i. d, metrics oJ Jocus i and c is
isovalue oJcurve.

Fis. 3: Generalized conic construction.

Now every vroint of rotated curve. instead of curve. will follow circle with multirle centers . How
does such beast look like? Tt is an isocurve in the slice and is called seneralized conic (or n Ellirse
.Seki991). Weishted sum of distances form all foci is constant for every roint of seneralized conic
(see formula | and fisure 3). The constant is determined by value at intersection roint between
slicing plane and rotated curve .FerkOOl Term focus has historical roots in namins of two srecial
voints inside ellivse. Later when curves with more srecial voints arrived. term focus was adorted for
them [Campr82] More about seneralized conics can be found in charter 3.

Havins several axes. slicins rlane can be prerrendicular to all of them only in srecial cases.
Therefore. we need additional curve. which can determine normal of slicins rlane. This curve is
called leadin® curve and has not other reason. than determination of slicins rlanes vosition and
orientation. In other words. axes have no more influence at bendins. It is exclusively done by
bendins a leadin® curve.

Fis. 4: Suuare to circle transition usins blend between Manhattan and
Euclidean metrics.

2.3 Various Metrics

Distance measurement for creation of seneralized conics is not restricted to use of Euclidean metrics.
Quite interesting results are obtained with Manhattan metrics. While Euclidean metrics creates
smooth seneralized conics. Manhattan one creates rolysons. It is also rossible to use different



metrics for different foci laxes). Havins two identical axes with different metrics. we can blend them
tosether and create smooth transition between circular and svuare slice (fisure 4). Detailed
descrirtion of modelins is siven in charter 6.2.

Manhattan metrics introduces sensitivity to orientation of coordinate system (see fisure 5).
Rotatins coordinate system. share can chanse sisnificantly. Consistent orientation of coordinate
system in neishborins slices is necessary. One of rossible solutions is to rotate coordinate system to
alisn z axis to normal of slice. Translated axes x and ¥ will create local coordinate system.

More details on usase of various metrics are siven in chavrter 3.

Fis. 5: Chanses in share oJ seneralized conics Jor Manhattan metrics when coordinate
system rotates.

2.4 Sesments

B> introduction of multirle axes. bendins becomes more rroblematic. Small bendins (ower than 90
desrees) is not influenced. Hisher bendin®s ansles can cause occurrence of additional foci in a slice.
Ther are caused by intersection of slicins rlane with rarts of axis. which are distant from exrected
set of foci. Due this reason it is not rossible to model torus.

This restriction can be bryrassed by declaration of sesments. Every sesment contains rart of
leadins curve. rart of each axis (void vrart is considered lesal) and rart of rotated curve. Sesment is
threatened as standalone seneralized solid of revolution for rurroses of slice creation. Sesments are
.oined to create seneralized solid of revolution. Not whole solid have to be covered by sesments
(this way you can create savs in it).

As an examrle of sesment usase. here are two pictures. Torus (fisure 7) can be created usins
three sesments. Leadins curve and the only axis are identical circles. rotated curve is scaled and
moved circle. Every circle is divided into three evually sized rieces (that create sesments).

The second examvle is shell (fisure 6) Tt is divided into nine sesments way analosous to torus.
Detailed descrirtion how to model shell (but usin® srecial version of seneralized solid of revolution
rather than sesments) is siven in chavter 6.

3. Generalized Conics and Their Proverties

Generalized conic as defined in formula | is simrle closed curve. For non nesative weishts of foci
with Euclidean and Manhattan metrics. it is alwarys convex (also for some other metrics. see
.Cech02] for details). The simrlest seneralized conics for Euclidean metrics is circle. Tt has only one
focus and shave is not affected with its weisht. Two e4vually weishted foci are used to create an
ellivse. Releasins restriction to evual weishts. Oval of Descartes .Camr82] is created. More foci



Fis. 6: Modelins oJshell usins sesments. Fis. 7: Modelins oJtorus usins sesments.

sive more comrlex curve. Generalized conic is more curved near foci. varts of curve far from foci
are similar to circle arcs.

Manhattan metrics causes ansled share of seneralized conics. The simplest shave is a sqyuare. Two
foci can create hexason or octason. derendins on their relative rosition in coordinate system.

3.1 Reducins Number of Foci

Evaluatins of seneralized conics is comrutationally comrlex task. The comvlexity rises with number
of foci. Sometimes loosing some precision in exchanse of sreed is accertable tradeoff Influence of
focus to share of seneralized conic derends on several rarameters. It is rosition of focus (relative to
other foci and also distance to seneralized conic is imrortant) and its weisht relative to other foci.
When focus has zero weisht. it does not have any influence on share Therefore removins such focus
is all risht and introduces no error.

Joining few foci with the same metrics results into simrler definition of seneralized conic. Not to
introduce much error. srour of foci has to be chosen carefully. The main criterion is their relative
vroximity in contrast to distance from curve. When radius of srour is sisnificantly small in
comrarison with distance from curve. they can be .oined without causins too much error Resultins
focus should be rlaced to mass center of foci srour. This heuristics takes only weishts and relative
rositions between foci in consideration. More vrecise heuristics (which also includes relative rosition
of foci to curve) can be made. but comvrutational costs are much hisher

3.2 Desenerated Generalized Conic

When intersection roint has minimal value of all values in the slice. seneralized conic desenerates
from closed curve into different ob.ect. When usins Euclidean metrics. only sinsle roint or straisht
line can occur For straisht line. all foci have to be collinear. Other confisurations create only one
roint when seneralized conic desenerates. In case when Manhattan metrics is used. also rectansular
area can occur. Foci set have to be symmetrical by two lines rarallel to both main coordinate system
axes.

4. Proverties of Generalized Solids of Revolution

Solids of revolution have some nice rrorerties. In rrocess of seneralization several of them chanse
(become ovrtional or lost). others are left unchansed. In this charter. we will take a closer look to
those more interestins of them.



4.1 Generalized Solids of Revolution as 2.5D Oblect

2.5D ob.ect is three dimensional ob.ect with one nice rrovrerty: every roint of surface has own
two dimensional coordinates (usually referred as u and v). This rrorerty is also rresent in
seneralized solids of revolution. The u coordinate is determined by rosition of roint on seneralized
conic. Zero u coordinate has intersection roint. the rest is marked in counterclockwise order The v
coordinate is common for all rvoints of one seneralized conic and differs for different ones.

Determinins u coordinates for roints of multifocal curve is not an easy task. Correct comrutation
should ensure u coordinate values to be rrorortional to distances alons curve. Many seneralized
conics are similar to circle. so first arrroach is to estimate u coordinate values from volar
coordinates. This works rerfectly for a circle. but is not so suitable for more comrlex (esrecially
non symmetrical) shares It is also derendent on choice of start of coordinate system The aim is to
choose seometrical center of curve interior. In neishborins slices. centers vrositions should be
correlated to avoid .erky chanses in u coordinates.

To arrroximate distances on seneralized conic with rolyson. many samrles are needed To
decrease comrutational costs. we need to arrroximate curve between two samrles better than by
straisht line. Curvature of curve sesment between samrles can be arrroximated usins sradients at
sample voints. Lensth of circular arc with radius evual to curvature radius is used to arrroximate
lensth of sesment. Testins has shown. that this arrroach sives 0.3% to 0.5% error for eisht samrles.
For 50 samvles (tyrical final mesh density) was less than one thousandth of rercent.

The situation with v coordinates can be worse. With seneral form of seneralized solids of
revolution. it is not rossible to .ust take rarameter from inrut curve and use it as v coordinate. When
leadin®s curve rarameter is chosen. several different seneralized conics would have assisned the same
value. Takin® only rotated curve rarameter. several slices can intersect with the same roint of curve.
Therefore. a combination of both is needed to rroduce correct v coordinate values. The solution is to
use distance function (charter 5.1) or slice choosins curve (charter 5.3) instead of rotated curve.
Then a rvarameter of distance function lor slice choosins curve) is a suitable value for v coordinate of
seneralized curve.

4.2 Gavrs

Solids of revolution have only one reason of having ®ars rotated curve was discontinuous.
Generalized solids of revolution have several more reasons why to contain sars (savrs can also be
forced manually by rrorer set uvr of slices).

4 2.1 Discontinuity of leadins curve

Discontinuous leadins curve causes discontinuous ob.ect. Each sesment of leadins curve senerates
standalone sesment of seneralized solid of revolution. However. in some srecial cases. usually with
straisht leadins curve. .umrins of leadins curve does not cause discontinuities.

4.2 2 Tansent of leadin® curve does not exist

Due missing tansent of leadin® curve. orientation of slice cannot be determined. This causes one
slice thick local discontinuity. If necessary. ob.ect can be interrolated over this sar Blend of
tansents in neishborins slices can be used to rroduce usable normal

4 2.3 No foci in a slice

When slicing rlane misses all axes. there are no foci and therefore no seneralized conic in the slice.

4 2 4 Infinite number of intersection roints in a slice

Intersections of slicins vlane and rotated curve can be a voint or whole rart of a curve. Takins all
voint of intersection leads into infinite summation. There is wide ranse of rossible solutions. One



roint of curve can be chosen to act as foci. or distance is measured as minimum distance from curve.
Probably the simrlest solution is to declare such slice illesal lin other words. to senerate local
discontinuity).

4 2.5 No intersection of rotated curve and slice

Where is no intersection. no seneralized conic can be Unlike rrevious discontinuities. this case
usually does not create local discontinuity.

4.2 6 Value of distance function is too small

When value of distance function is smaller than minimum value in the slice. no seneralized conic is
created. When value is evual to minimum. a desenerated seneralized conic occurs (see charter 3.2).

4 2 7 Chanse in number of foci

Whenever chanse in number of foci with nonzero weishts occurs. shares of seneralized conics in
neishborins slices becomes non matching. Such slice creates border between two discontinuous
sesments.

4 2 8 Discontinuous chanse in weishts of foci

Similar to rrevious case. also ster chanse in weishts of seneralized conics causes discontinuity. The
excertion is case. when two foci share vosition and chanse in one weisht is comrensated in weisht
chanse of second focus.

5. Srecial Variants of Generalized Solids of Revolution

Allowins full ranse of seneralizations sives us a variety in rossible shares. but modeling can become
yuite messy. To enable more clear inruts. we can simprlify or restrict some constructions. Althoush
we loose some share variety. modelins becomes more rowerful due clearer and more intuitive
inruts.

5.1 Simvlified Variant of Generalized Solids of Revolution

In fact. we dont need to have an intersection roint to senerate seneralized conic. The same soal can
be achieved using scalar value (the value that intersection roint should have) TInstead of rotated
curve. a function (called distance function) can be used This somehow restricts maximum number of
seneralized conics per slice. While number of intersections between rotated curve and slicins rlane
was unbounded. distance function can senerate ur to one seneralized conic. Still. there can be no
seneralized conic. This time it is due fact. that value of function is less or e4ual to minimum of
weishted distance sum in the slice.

5.2 Lofted Variant of Generalized Solids of Revolution

Avoidins unwanted foci by declaring sesments is often a must. Without it. many cool lookins ob.ects
would turn into usly rotatoes. Extendins idea of infinity of sesments. each focus can be defined rer
slice basis. Instead of usins three dimensional curve. we can use two dimensional one. Each slice has
univue number (rarameter) assisned. By evaluation of leadins curve for chosen rarameter. a rosition
and orientation of slice is determined. Coordinates of focus in the slice are obtained by evaluatins
axis at varameter. Rotated curve is also two dimensional or distance function can be used instead.

Lofted variant is very similar to loftins technivue. In comrarison. it does not allow such variety in
swert shaves as loftins. but due existence of distance function. it enables fine level control of
interrolation alons the solid. Lofted variant is subset of seneralized cylinders [RehaOl |



5.3 Slice choosins Curve

Problem with ambisuity of v coordinate described in charter 41 can be solved by usins
slice choosins curve instead of rotated curve. Slice choosins curve consists of two dimensional
curve and slice choosins function (so in fact it is three dimensional curve). A value of slice choosins
function identifies slice (value is rarameter at leadin® curve that senerates slice) and corresronding
roint of two dimensional curve acts as an intersection roint in the slice. In contrast with usase of
distance function. slice is not restricted to contain only one seneralized conic. Instead of
two dimensional curve. a distance function can be used.

6. Modelins Examvles

Enoush of theory. lets make some rractical examrles. Creation of victures is made in two sters. As a
first ster. ob.ects meshes are rroduced with rackase libsro (httr://libsro sourceforse net).
Visualization itself is done in Persistence of Vision raytracer (htty://www rovray ors). Software
rackase libsro is rart of mvy masters thesis Generalized Rotational ObJjects. Thesis is available
online via URL httr://dw.cech.c.b.net.

6.1 Modelins a Shell

Lofted variant of seneralized solid of revolution with distance function is well suited to model shell
that would many snails envy In fact. shell is only a modified cone. The only axis has both x and »
coordinates constant and zero. This way it is identical to leadins curve. that soes directly throush the
center of cone. Leadins curve has sviral share Distance function is simvle linear falloff from one to
zero with three rercent modulation to make rinss. The exact definition is summed in table | and
shown in fisure 8 Resultins imase is shown in fisure 9

Curve/lunction DeJnition

X—tcos 87t

) y—tsin 8t
Leadins curve k

z=2l cosl%nt))

. x-0
Axis 0

Distance function t.0.97+0.03 sin.173.27t))

Table 1: Deldinition oJshell [all curves and Junctions have ranse oJdekinition <0. 1> ).

6.2 Suuare to Circle Transition Usins Two Metrics

Both s4uare and circle can be created usins only one axis (with Manhattan metrics in case of s4uare
and Euclidean in case of circle). Unfortunately. one axis cannot have more than one metrics assisned.
We need to use little trick two sratially identical axes. that differs only with metrics and weisht.
Alons axes. a linear blend of weishts is created. While Manhattan ones weisht fades out (from one
to zero). Euclidean ones weisht fades in (from zero to one). Sum of both weishts is one in each
roint of axes Rest of definition is simrle. Leadins curve is identical to axes and distance function is
constant (any vrositive value does the .ob fine) The final imase is shown in fisure 4.



Fis. 8: DeJnition oJshell. Leadins curve and Fis. 9: Ashell
axis lidentical) are black. distance Junction
(visualized as rotated curve/ is srav.

7. Conclusion

Generalized solids of revolution introduce new rossibilities to modelins. Althoush the rrocess of
seneralization brinss some difficulties. most of them can be avoided by carefully chosen rarameters
Uncludina rrovrer division into sesments). Svecial variants. in contrast to seneral form. suffer less
from modelins rroblems. They offer some additional functionality in exchanse of some modelins
rossibilities.

Generalized solids of revolution brins new ways of modelins. It offers wide ranse of rossibilities
in corrins of reality and also in comruter arts. In fact. our new method combines as the shell
examrle shows the desirable rroverties of modelins. srecial (vrocedural) modelins and functional
rerresentation (F revr)

There are still oren ways of research (for examrle using axes with nesative weishts).
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