
Character Animation for Real-time Applications

Michael Putz, mike@bongfish.com
Klaus Hufnagl, klaus@bongfish.com

Institute of Computer Graphics
Graz University of Technology

Austria

Abstract

Many of the techniques which had recently only been used in off-line animation, like skeletal
animation, real-time deformation and skinning of meshes, are now established methods for the
implementation of real-time 3D character animation.
The importance of real-time character animation in computer games has increased considerably
over the past decade. Due to advances in computer hardware and especially the introduction of
Graphic Processing Units, the demand for more realism in computer games is continuously
growing. Beside traditional pre-computed and then replayed animation data, there is use for
event triggered real-time calculated animation.
Animating models by manipulating an attached skeleton is a common technique for producing
lifelike animations in games. It has both a firm basis in biological reality, and a low memory
requirement (compared to, for example, storing vertex and normal vectors for each frame).
This work shows a way of combining both off-line animation and real-time generated
procedural animation.

Keywords:

skeletal animation and mesh skinning, real-time Inverse Kinematics, bones, biped, real-time
character animation, skinning, physic based animation, procedural animation, parametric
animation

1. Introduction:

In the last years many attempts were taken to simulate lifelike character behaviour in real-time
applications like computer-games.

In a hierarchic organized 3D character, different body parts of the articulated object are
separate objects, stored in a hierarchy and joined to each other at pivot points, each referencing
child objects (= attached objects of a lower hierarchic order). The flexibility and adaptability of
this method are its main benefits; however this method also has a number of drawbacks: As the
objects in the hierarchy are all separate, it is inevitable that gaps between these objects will
appear when the character is animated [Lander1997].

Blending between Character Meshes, also called vertex-key-framing, uses interpolation
functions to generate the in-between positions of the vertices from different poses. Tweening is
the fastest way of animating, but it requires the application to hold multiple copies of the mesh

in memory, one for each key frame, so its memory footprint is very high. A more flexible
solution would allow the artist to set up the meshes for animation as they normally do, by
attaching them to a skeletal system and then letting the game perform the skeletal deformation
itself. This would enable the application to create unique animation sequences based on user
interaction, instead of interpolating from pre-modelled and stored poses. Besides offering
increased realism, this technique can be more easily integrated with various physics simulators.
After taking a look at the requirements of the mentioned animation techniques, this paper will
present an implementation showing the combination of precomputed animation and real-time
effects based on a skeletal system.

2. Related work

Before we start implementing a real-time solution for enhancing character movement, we take
a look at related topics to fully understand the implementations coming next chapter.

2.1 Skeleton Animation Systems

Beside the mesh 3d-data representing the character, a skeletal animation system consists of a
series of hierarchical transformations which represent bones. Like a real bone in a human body
they influence the shape of the skin. Only the bone data needs to be stored for every frame of
the animation. Usually, the bone data is represented by quaternions or a transformation matrix.
This eliminates the need to store vertex positions for all the vertices for every frame of the
animation, as in the vertex based animation. We can derive intermediate frames by using
spherical interpolation.

Fig. 1: Schematic skeleton view

Advantages of skeletal animation are the smooth transitions while changing from one
animation to the other. Additionally any number of animations can be added whereas the mesh
remains constant and the same animation-cycles could be applied to different meshes while
conserving a relative small memory footprint.

2.2 The need for skinning to generate a vertex-hull

Mesh (vertices) or skin is attached to the bones. Now when the bones move or rotate, the
vertices attached to the bone also move or rotate according to their representative bones.One
way of attaching vertices to bones is by using a single offset per vertex. So every bone tightly
influences a group of faces from the character-mesh.

2.2.1 Single weight vertices & their disadvantages

The following images show the relationship of the skeleton / bone with its mesh. The semi-
transparent object is the mesh. As you see, they are tightly coupled. When a bone moves, the
vertices attached to it also move [Anderson2001].

Fig. 2: Schematic bone / skin view Fig. 3: Vertex / bone relation

Fig. 3 shows the same relationship as explained above. The only difference is that the mesh is
shown in wire frame. The green line divides the vertices between the first and second bone.
Vertices are represented by a small "+" sign. Vertices on the right are marked red indicating
that they belong to the second bone, where as the vertices on the left are marked white
indicating that they belong to the first bone. The following figure (4) highlights the main
drawback of the skeletal animation system using a single weight per vertex. When rigid bodies
move, the vertices attached to them also move rigidly.

Fig. 4: Single weighted vertex drawback

2.2.2 Multiple weighted vertices for smooth skinning

Introducing multiple weights per vertex improves the smoothness of the mesh-hull. This
process is called vertex blending. This is achieved by allowing more than just one bone to
influence each vertex, effectively mimicking the way that a bone in the real world would affect

the skin of a living being. Each vertex is given information about which of the bones in the
skeleton influence it and how great the influence of those bones is (skin weight). What we need
is a skin that will blend smoothly between the rigid joints.

Fig. 5: multiple weights per vertex

Now every vertex is attached to multiple bones with different weights. This results in a smooth
moving skin adapting itself to muscle-bulges and corners.

The generic blending formula:

vBlend = V1W1 + … + Vn-1Wn-1 + Vn (1.0-Wi)

Here vBlend is the output vertex, Vn the n-th vertex and Wn is the n-th vertex's weight.
For two, three and four weighted matrices, the above formula becomes:

vBlend = V1W1 + V2(1.0 – W1)
vBlend = V1W1 + V2W2 +V3(1.0 – (W1+W2))
vBlend = V1W1 + V2W2 +V3W3+V4(1.0 – (W1+W2+W3))

Typically, the vertex structure for a blending vertex looks like this:

#define MAX_BLEND_WEIGHTS 2
typedef struct_BlendVertex
{
D3DVECTOR Position;
D3DVECTOR Normal;
FLOAT fWeights[MAX_BLEND_WEIGHTS]; // blending weights
BYTE btIndices[MAX_BLEND_WEIGHTS]; // index to bone-matrix-array
DWORD Diffuse; //color
FLOAT tu,tv; // texture coordinats
}

2.3 File Format

As mentioned before, the more data is available, the fewer calculations are required. It is
advisable to store only the data on disk that cannot be generated on the fly by the program.
Let’s take a quick look what data has to be stored in a 3D model file to support the animation
of that model:

2.3.1 Skeleton

The data required to store a skeleton for an articulated object, apart from positional
information for its joints itself, is the relationship between those joints. The easiest way to do
this is by nesting the information for joints of a lower order in the hierarchy just below the joint
which they are supposed to be connected to. For the joints themselves, all that needs to be
known is the relative position of the joint which occupies the next higher order in the joint
hierarchy of the skeleton. Bones (connections between the joints – vectors pointing from a
joint to that joint’s child joints) do not have to be explicitly saved in the file, as they are
implicitly defined by the joints which they connect.

Figure 6: Hierarchic name convention for bones in X-files

Each Frame includes a FrameTransformMatrix, containing local transformations for that
Frame. A Frame can also contain Mesh objects defining the vertices that form a 3D model, and
child Frames.

2.3.2 Skin

The information which has to be stored for the skin of an articulated object, are the vertices
which make up the skin. Each vertex structure has to contain data regarding the untransformed
position of the vertex itself, the vertex normal, the UV texture coordinates of the vertex for
texturing the model, a list of bones and skin weights, which define which of the joints of the
skeleton are able to influence the vertex and by how much each of these joints influences the
vertex.

2.3.3 Animation Cycles

Usually transformation information for all the joints of the articulated structure is stored in
each key-frame of an animation. In the X-File format animation cycles are saved in the
AnimationSet structure. Within an AnimationSet one can define a separate Animation for each
part of the model which animates within the time frame of that particular animation cycle. Each
Animation contains an AnimationKey structure which in turn contains a list of timed key
transformations which will affect the part of the model referenced by the animation
[Anderson2001].

3. Approach & Implementation

3.1 Offline-animation Implementation

The SkinnedMesh sample, that is part of the DirectX8 SDK, already offers functions to load
the mesh, its texture and animation sets from X Files [Freid2001]. The sample-code makes use
of a framework that handles device initialisation and shows how to render a skinned mesh with
software, hardware T&L indexed and non-indexed vertex processing. The mesh and animation
information in the X Files is stored in frames, called sFrames here. Animation is handled by
linked lists of key frames for the given joint and numbers of key-frames. To play an animation,
the given function SetTime is called with a time-value within a loop through all the frames in
FrameMove.

while ((pdeCur != NULL) // pointer to current sub object (mesh)
{
pframeCur = pdeCur->pframeAnimHead; // current frame is head of hierarchy
 while (pframeCur != NULL)
 {
 pframeCur->SetTime(pdeCur->fCurTime); //go to timestamp in the animation
 pframeCur = pframeCur->pframeAnimNext; //advance to next bone or joint
 }
pdeCur = pdeCur->pdeNext; //advance to next sub object in the x-file
}

To get the related frame number of the 3dsmax animation, we have to multiply the current
timestamp by 4800 and divide through 30. (In case the animation is saved with 30 fps)
1/4800sec is the 3dsmax time unit. It is chosen to be a multiple of the standard frame rates 24
(movies), 60 (NTSC) and 50 (PAL).

The SetTime function searches the corresponding matrix key to the given timestamp at the
current joint. If the timestamp lies between two matrix keys, the key-frame that is closer in
time to the given value is displayed. This results in jumping and “jaggy” animation at lower
frame-rates, since the keys usually resemble positions further apart in space. The same
technique is used with scale and rotation keys. To smooth the animation, interpolation between
the key-frames is necessary. A linear interpolation between the keys in question happens to be
the best solution to guarantee constant movement. To enhance the basic animation functions
and make them usable for a real-time gaming application, it is not enough to play custom
animations forward and backward; other functions are needed as well.

One example for enhanced offline-animation is the blending of the end of an animation with the
beginning of a new one. Additionally the interpolation is implemented either cubic or linear.
In a playing animation, the timing can be critical, so no additional blending frames are wanted.
In this example 4 original frames are "lost" to guarantee the motion-flow.
The interpolated key-frames are generated “on the fly” and not stored in memory.

3.2 Physic-based Implementation

The current use of physic based animation in real-time applications is limited to special
problems like animating chains (Fig. 7) or vegetation. But there are many more opportunities
to breathe life into objects [Walter1997].

Fig. 7: Sony’s ICO real-time IK chain

Due the recent availability of hardware transform & lightning, we are now able to devote
processor time to tasks other than environments. There are no more excuses for bad character
animation [Lander2000].

To achieve more life-like characters typical uses for procedural animations are look-at
constraints, secondary motion, inverse-kinematics, muscle-bulges, chest-heaves, ponytails or
cloth-animation.

3.2.1 Implementing physic based animation using bones animation

By modifying single bones in a skeleton system there is no more need for re-calculating every
single vertex for physic based animation effects.
Let’s imagine a snowboarder character mesh which arms should shake when surfing over harsh
snow underground. So we need an algorithm which can parse itself through an hierarchical
bone-structure and modify the needed bone-positions. Since we want the “arm-shaking” to be
calculated on the fly, there is need for 2 kinds of parameters.

3.2.1.1 Initial parameters:

// PARAMETERS FOR COS-BASED factor (factor = cosf(time*speed)*amplitude
 m_fAnimProceduralSpeed =40.0f;
 m_fAnimProceduralAmplitude =0.3f;
// PARAMETERS for relations between hierachies
 m_fAnimProceduralAttenuation =0.3f;

// PARAMETERS FOR TRANSLATION (e.g. transx*factor)
 m_fAnimProceduralTransX=0.0f;
 m_fAnimProceduralTransY=1.0f;
 m_fAnimProceduralTransZ=0.0f;

// PARAMETERS FOR ROTATION (e.g. rotx*factor)
 m_fAnimProceduralRotX=0.0f;
 m_fAnimProceduralRotY=0.1f;
 m_fAnimProceduralRotZ=0.0f;

3.2.1.2 Runtime parameters:

// to fade out/in animation
m_fAnimProceduralFADE;

// type of animation (preset)
m_gAnimProceduralTYPE;

3.3 Approach:

First we calculate a value depending on playback speed and the maximum allowed amplitude.

// calc speed & amplitude
m_fFactor=cosf(m_fTime*m_fAnimProceduralSpeed)*m_fAnimProceduralAmplitude;

Then the hierarchical level of the modified bone will be brought into this calculation.

// increase attentutation for every hierachical level
if (m_fBoneModifier > 0.1f) m_fBoneModifier +=m_fAnimProceduralAttenuation;
if (m_fBoneModifier < 0.0f) m_fBoneModifier = 0.0f;

// calc final modifier including hierachical level
m_fFactor = m_fFactor*m_fBoneModifier*(1-m_fAnimProceduralFADE);

Finally we setup a translation and rotation matrix containing the initial parameters and the
appropriate runtime factors.

Those matrices are now multiplied with the original bone matrices, resulting in a blend of
offline-animated & physic-based bone position.

4. Results

To view different examples of offline character animations, their advantages and disadvantages
as well as the combination with physics based character animation the use of our custom
viewer is recommended.

Fig. 8: Physic based “shake” animation

Fig. 9: Offline signature animation

With above implementation it is easy to trigger the “arm-shake animation” (Fig.8) with events
coming from the physic-engine. Now the character mesh can be easily animated using an
offline animation for signature moves (Fig.9) like personal expression or certain poses
requiring a performance-expensive inverse-kinematics solution, while adding physic based
animation on the fly with no extra performance cost (Fig.10).

Fig. 10: combined result of physic-based and precomputed animation

5. Conclusion & Outlook

Simulation and animation should work together in any modern computer game that makes use
of character movement. On the one hand, complex, motion captured moves could be
integrated to simulate character specific behavior like feelings or signature moves. On the other
hand, real-time animation of certain bones can add additional realism without losing to much
performance. The above implementation shows a way of combining both offline-animation and
real-time procedural animation. For professional use enhanced motion blending of the
animations would be useful. Like the support of multichannel precalculated animations (for
example separate arm or leg movements). The realtime procedural part at this stage only
supports animations based on sinus/cosinus movements. Although this works well for shaking-
like animations, a more sophisticated approach would widen the range of use. An interesting

application would be a real-time inverse-cinematic solution to simulate anatomical correct
crash-animations using physic based triggers and terrain-information.

6. References

[Anderson2001] E.F. Anderson - Real-Time Character Animation for Computer Games,
National Centre for Computer Animation, Bournemouth University, 2001

[Freidlin01] B. Freidlin, DirectX 8.0: Enhancing Real-Time Character Animation with Matrix
Palette Skinning and Vertex Shaders, MSDN Magazine, 2001

[Lander1997] J. Lander, "On Creating Cool Real-Time 3D", 1997, http://www.gamasutra.com

[Lander2000] J. Lander, Using Technology to Create Believable 3D Characters, 2000

[Walter1997] M. Walter, A. Fournier, Growing and Animating Polygonal Models of Animals,
Computer Graphics Forum, 16 (3), pp. 151-158, (August 1997)

