
Character Animation for Real-time Applications 

Michael Putz, mike@bongfish.com 
Klaus Hufnagl, klaus@bongfish.com 

Institute of Computer Graphics 
Graz University of Technology 

Austria 

Abstract 

Many of the techniques which had recently only been used in off-line animation, like skeletal 
animation, real-time deformation and skinning of meshes, are now established methods for the 
implementation of real-time 3D character animation.  
The importance of real-time character animation in computer games has increased considerably 
over the past decade. Due to advances in computer hardware and especially the introduction of 
Graphic Processing Units, the demand for more realism in computer games is continuously 
growing. Beside traditional pre-computed and then replayed animation data, there is use for 
event triggered real-time calculated animation. 
Animating models by manipulating an attached skeleton is a common technique for producing 
lifelike animations in games. It has both a firm basis in biological reality, and a low memory 
requirement (compared to, for example, storing vertex and normal vectors for each frame).  
This work shows a way of combining both off-line animation and real-time generated 
procedural animation. 
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1. Introduction: 
 
In the last years many attempts were taken to simulate lifelike character behaviour in real-time 
applications like computer-games. 
 
In a hierarchic organized 3D character, different body parts of the articulated object are 
separate objects, stored in a hierarchy and joined to each other at pivot points, each referencing 
child objects (= attached objects of a lower hierarchic order). The flexibility and adaptability of 
this method are its main benefits; however this method also has a number of drawbacks: As the 
objects in the hierarchy are all separate, it is inevitable that gaps between these objects will 
appear when the character is animated [Lander1997]. 
 
Blending between Character Meshes, also called vertex-key-framing, uses interpolation 
functions to generate the in-between positions of the vertices from different poses. Tweening is 
the fastest way of animating, but it requires the application to hold multiple copies of the mesh 



in memory, one for each key frame, so its memory footprint is very high. A more flexible 
solution would allow the artist to set up the meshes for animation as they normally do, by 
attaching them to a skeletal system and then letting the game perform the skeletal deformation 
itself. This would enable the application to create unique animation sequences based on user 
interaction, instead of interpolating from pre-modelled and stored poses. Besides offering 
increased realism, this technique can be more easily integrated with various physics simulators.  
After taking a look at the requirements of the mentioned animation techniques, this paper will 
present an implementation showing the combination of precomputed animation and real-time 
effects based on a skeletal system. 
 
 
2. Related work 
 
Before we start implementing a real-time solution for enhancing character movement, we take 
a look at related topics to fully understand the implementations coming next chapter. 
 
2.1 Skeleton Animation Systems 
 
Beside the mesh 3d-data representing the character, a skeletal animation system consists of a 
series of hierarchical transformations which represent bones. Like a real bone in a human body 
they influence the shape of the skin. Only the bone data needs to be stored for every frame of 
the animation. Usually, the bone data is represented by quaternions or a transformation matrix. 
This eliminates the need to store vertex positions for all the vertices for every frame of the 
animation, as in the vertex based animation. We can derive intermediate frames by using 
spherical interpolation.  
 

 
Fig. 1: Schematic skeleton view 

 
Advantages of skeletal animation are the smooth transitions while changing from one 
animation to the other. Additionally any number of animations can be added whereas the mesh 
remains constant and the same animation-cycles could be applied to different meshes while 
conserving a relative small memory footprint. 
 
 
 



2.2 The need for skinning to generate a vertex-hull 
 
Mesh (vertices) or skin is attached to the bones. Now when the bones move or rotate, the 
vertices attached to the bone also move or rotate according to their representative bones.One 
way of attaching vertices to bones is by using a single offset per vertex. So every bone tightly 
influences a group of faces from the character-mesh. 
 
2.2.1 Single weight vertices & their disadvantages 
 
The following images show the relationship of the skeleton / bone with its mesh. The semi-
transparent object is the mesh. As you see, they are tightly coupled.  When a bone moves, the 
vertices attached to it also move [Anderson2001]. 
 

  
Fig. 2: Schematic bone / skin view Fig. 3: Vertex / bone relation 
 
Fig. 3 shows the same relationship as explained above. The only difference is that the mesh is 
shown in wire frame. The green line divides the vertices between the first and second bone. 
Vertices are represented by a small "+" sign. Vertices on the right are marked red indicating 
that they belong to the second bone, where as the vertices on the left are marked white 
indicating that they belong to the first bone. The following figure (4) highlights the main 
drawback of the skeletal animation system using a single weight per vertex. When rigid bodies 
move, the vertices attached to them also move rigidly. 
 

 
Fig. 4: Single weighted vertex drawback 

 
2.2.2 Multiple weighted vertices for smooth skinning 
 
Introducing multiple weights per vertex improves the smoothness of the mesh-hull. This 
process is called vertex blending. This is achieved by allowing more than just one bone to 
influence each vertex, effectively mimicking the way that a bone in the real world would affect 



the skin of a living being. Each vertex is given information about which of the bones in the 
skeleton influence it and how great the influence of those bones is (skin weight). What we need 
is a skin that will blend smoothly between the rigid joints. 
 

 
Fig. 5: multiple weights per vertex 

 
Now every vertex is attached to multiple bones with different weights. This results in a smooth 
moving skin adapting itself to muscle-bulges and corners. 
 
The generic blending formula:  
 
vBlend = V1W1 + …  + Vn-1Wn-1 + Vn (1.0-Wi) 
 
Here vBlend is the output vertex, Vn the n-th vertex and Wn is the n-th vertex's weight. 
For two, three and four weighted matrices, the above formula becomes:  
 
vBlend = V1W1 + V2(1.0 – W1)  
vBlend = V1W1 + V2W2 +V3(1.0 – (W1+W2))  
vBlend = V1W1 + V2W2 +V3W3+V4(1.0 – (W1+W2+W3))  
 
Typically, the vertex structure for a blending vertex looks like this:  
 
#define MAX_BLEND_WEIGHTS 2 
typedef struct_BlendVertex 
{ 
D3DVECTOR Position; 
D3DVECTOR Normal; 
FLOAT  fWeights[MAX_BLEND_WEIGHTS];  // blending weights 
BYTE   btIndices[MAX_BLEND_WEIGHTS];  // index to bone-matrix-array 
DWORD  Diffuse;  //color 
FLOAT   tu,tv;  // texture coordinats 
} 
 
2.3 File Format 
 
As mentioned before, the more data is available, the fewer calculations are required. It is 
advisable to store only the data on disk that cannot be generated on the fly by the program. 
Let’s take a quick look what data has to be stored in a 3D model file to support the animation 
of that model:  



2.3.1 Skeleton 
 
The data required to store a skeleton for an articulated object, apart from positional 
information for its joints itself, is the relationship between those joints. The easiest way to do 
this is by nesting the information for joints of a lower order in the hierarchy just below the joint 
which they are supposed to be connected to. For the joints themselves, all that needs to be 
known is the relative position of the joint which occupies the next higher order in the joint 
hierarchy of the skeleton. Bones (connections between the joints – vectors pointing from a 
joint to that joint’s child joints) do not have to be explicitly saved in the file, as they are 
implicitly defined by the joints which they connect. 
 

 
Figure 6: Hierarchic name convention for bones in X-files 

 
Each Frame includes a FrameTransformMatrix, containing local transformations for that 
Frame. A Frame can also contain Mesh objects defining the vertices that form a 3D model, and 
child Frames. 
 
2.3.2 Skin 
 
The information which has to be stored for the skin of an articulated object, are the vertices 
which make up the skin. Each vertex structure has to contain data regarding the untransformed 
position of the vertex itself, the vertex normal, the UV texture coordinates of the vertex for 
texturing the model, a list of bones and skin weights, which define which of the joints of the 
skeleton are able to influence the vertex and by how much each of these joints influences the 
vertex. 



2.3.3 Animation Cycles 
 
Usually transformation information for all the joints of the articulated structure is stored in 
each key-frame of an animation. In the X-File format animation cycles are saved in the 
AnimationSet structure. Within an AnimationSet one can define a separate Animation for each 
part of the model which animates within the time frame of that particular animation cycle. Each 
Animation contains an AnimationKey structure which in turn contains a list of timed key 
transformations which will affect the part of the model referenced by the animation 
[Anderson2001]. 
 
 
3. Approach & Implementation 
 
3.1 Offline-animation Implementation 
 
The SkinnedMesh sample, that is part of the DirectX8 SDK, already offers functions to load 
the mesh, its texture and animation sets from X Files [Freid2001]. The sample-code makes use 
of a framework that handles device initialisation and shows how to render a skinned mesh with 
software, hardware T&L indexed and non-indexed vertex processing.  The mesh and animation 
information in the X Files is stored in frames, called sFrames here. Animation is handled by 
linked lists of key frames for the given joint and numbers of key-frames. To play an animation, 
the given function SetTime is called with a time-value within a loop through all the frames in 
FrameMove. 
 
while ((pdeCur != NULL)    // pointer to current sub object (mesh) 
{ 
pframeCur = pdeCur->pframeAnimHead;  // current frame is head of hierarchy 
       while (pframeCur != NULL) 
 { 
   pframeCur->SetTime(pdeCur->fCurTime); //go to timestamp in the animation 
   pframeCur = pframeCur->pframeAnimNext;  //advance to next bone or joint 
  } 
pdeCur = pdeCur->pdeNext;    //advance to next sub object in the x-file 
} 
 
To get the related frame number of the 3dsmax animation, we have to multiply the current 
timestamp by 4800 and divide through 30. ( In case the animation is saved with 30 fps ) 
1/4800sec is the 3dsmax time unit. It is chosen to be a multiple of the standard frame rates 24 
(movies), 60 (NTSC) and 50 (PAL). 
 
The SetTime function searches the corresponding matrix key to the given timestamp at the 
current joint. If the timestamp lies between two matrix keys, the key-frame that is closer in 
time to the given value is displayed. This results in jumping and “jaggy” animation at lower 
frame-rates, since the keys usually resemble positions further apart in space. The same 
technique is used with scale and rotation keys. To smooth the animation, interpolation between 
the key-frames is necessary. A linear interpolation between the keys in question happens to be 
the best solution to guarantee constant movement. To enhance the basic animation functions 
and make them usable for a real-time gaming application, it is not enough to play custom 
animations forward and backward; other functions are needed as well. 
 



One example for enhanced offline-animation is the blending of the end of an animation with the 
beginning of a new one.  Additionally the interpolation is implemented either cubic or linear. 
In a playing animation, the timing can be critical, so no additional blending frames are wanted. 
In this example 4 original frames are "lost" to guarantee the motion-flow.  
The interpolated key-frames are generated “on the fly” and not stored in memory. 
 
3.2 Physic-based Implementation 
 
The current use of physic based animation in real-time applications is limited to special 
problems like animating chains (Fig. 7) or vegetation. But there are many more opportunities 
to breathe life into objects [Walter1997]. 
 
 

 
Fig. 7: Sony’s ICO real-time IK chain 

 
 
Due the recent availability of hardware transform & lightning, we are now able to devote 
processor time to tasks other than environments. There are no more excuses for bad character 
animation [Lander2000]. 
 
To achieve more life-like characters typical uses for procedural animations are look-at 
constraints, secondary motion, inverse-kinematics, muscle-bulges, chest-heaves, ponytails or 
cloth-animation. 
 
3.2.1 Implementing physic based animation using bones animation 
 
By modifying single bones in a skeleton system there is no more need for re-calculating every 
single vertex for physic based animation effects. 
Let’s imagine a snowboarder character mesh which arms should shake when surfing over harsh 
snow underground. So we need an algorithm which can parse itself through an hierarchical 
bone-structure and modify the needed bone-positions. Since we want the “arm-shaking” to be 
calculated on the fly, there is need for 2 kinds of parameters. 
 
3.2.1.1 Initial parameters: 
 
// PARAMETERS FOR COS-BASED factor ( factor = cosf(time*speed)*amplitude 
  m_fAnimProceduralSpeed =40.0f; 
  m_fAnimProceduralAmplitude =0.3f; 
// PARAMETERS for relations between hierachies 
  m_fAnimProceduralAttenuation =0.3f; 
 



// PARAMETERS FOR TRANSLATION ( e.g. transx*factor ) 
  m_fAnimProceduralTransX=0.0f; 
  m_fAnimProceduralTransY=1.0f; 
  m_fAnimProceduralTransZ=0.0f; 
 
// PARAMETERS FOR ROTATION ( e.g. rotx*factor ) 
  m_fAnimProceduralRotX=0.0f; 
  m_fAnimProceduralRotY=0.1f; 
  m_fAnimProceduralRotZ=0.0f; 
 
3.2.1.2 Runtime parameters:  
 
// to fade out/in animation 
m_fAnimProceduralFADE;  
 
// type of animation (preset) 
m_gAnimProceduralTYPE; 
 
3.3 Approach: 
 
First we calculate a value depending on playback speed and the maximum allowed amplitude. 
 
// calc speed & amplitude  
m_fFactor=cosf(m_fTime*m_fAnimProceduralSpeed)*m_fAnimProceduralAmplitude;  
 
Then the hierarchical level of the modified bone will be brought into this calculation. 
 
// increase attentutation for every hierachical level 
if (m_fBoneModifier > 0.1f) m_fBoneModifier +=m_fAnimProceduralAttenuation;  
if  (m_fBoneModifier < 0.0f) m_fBoneModifier = 0.0f; 
 
// calc final modifier including hierachical level 
m_fFactor = m_fFactor*m_fBoneModifier*(1-m_fAnimProceduralFADE);  
 
Finally we setup a translation and rotation matrix containing the initial parameters and the 
appropriate runtime factors. 
 
Those matrices are now multiplied with the original bone matrices, resulting in a blend of 
offline-animated & physic-based bone position. 
 
 
4. Results 
 
To view different examples of offline character animations, their advantages and disadvantages 
as well as the combination with physics based character animation the use of our custom 
viewer is recommended. 
 
 



Fig. 8: Physic based “shake” animation 
 

 
Fig. 9: Offline signature animation 

With above implementation it is easy to trigger the “arm-shake animation” (Fig.8) with events 
coming from the physic-engine. Now the character mesh can be easily animated using an 
offline animation for signature moves (Fig.9) like personal expression or certain poses 
requiring a performance-expensive inverse-kinematics solution, while adding physic based 
animation on the fly with no extra performance cost (Fig.10). 
 

 
Fig. 10: combined result of physic-based and precomputed animation 

 
 
5. Conclusion & Outlook 
 
Simulation and animation should work together in any modern computer game that makes use 
of character movement. On the one hand, complex, motion captured moves could be 
integrated to simulate character specific behavior like feelings or signature moves. On the other 
hand, real-time animation of certain bones can add additional realism without losing to much 
performance. The above implementation shows a way of combining both offline-animation and 
real-time procedural animation. For professional use enhanced motion blending of the 
animations would be useful. Like the support of multichannel precalculated animations ( for 
example separate arm or leg movements). The realtime procedural part at this stage only 
supports animations based on sinus/cosinus movements. Although this works well for shaking-
like animations, a more sophisticated approach would widen the range of use. An interesting 



application would be a real-time inverse-cinematic solution to simulate anatomical correct 
crash-animations using physic based triggers and terrain-information. 
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