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Abstract

Inverse kinematics is used in several fields of applications and computer graphics
is one of them. This technique has found a good utilization especially as a tool for
animation of articulated structures. The insight of the inverse kinematics is based
on basic knowledge in kinematics generally. This paper presents an overview of the
methods used to solve the problems concerning inverse kinematics. The difference
between forward and inverse kinematics is explained in the beginning of the text.
The basic terms and definitions are explained in the background section. Then the
methods, their advantages, and disadvantages are reviewed. Finally, some aspects
of implementation are discussed.

1 Introduction

Kinematics in computer animation is usually divided into two basic parts — forward
kinematics and inverse kinematics. Forward kinematics is based on the manipu-
lation with the structure, that is done by changes of the joint angles inside the
controlled structure (Figure 1a). Inverse kinematics is based on the direct manip-
ulation with the end of the structure and the joint angles are derived from changes
of the end of the structure (Figure 1b).
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Figure 1: Process of manipulation of the structure through a) forward b) inverse
kinematics.

Since inverse kinematics makes possible to manipulate the articulated structure
by the end effector, it could be used in animation techniques for easy motion
control.



The problems relating to the inverse kinematics are known for a long time and
are in more detail described in the literature, e.g. [WW92], [Wel93], [Chi96].

2 Background

There are some substitutions in the animation process to reach simplicity in models
describing the animated object. Control techniques used in inverse kinematics are
often based on a skeleton consisting of links connected with joints (Figure 1).
That model is usually denoted as the “articulated structure” [WW92|. There are
several types of joints (revolute, prismatic, etc.) [WW92], [Mck91]. The computer
animation is usually restricted to rotation joints.

The articulated models (Figure 1) have hierarchical structure where each link
has its own coordinate system (CS) and is positioned relatively to the CS of the
previous link. The position of the link 7 in the CS of its predecessor is described
by the joint angle. Thus, every joint transformation is local. That fact assists in
operations with hierarchical articulated structure (Figure ). The transformation
from the CS of any given link ¢ to the world CS is given by concatenation of partial
transformations between each two neighbor links from the base to the given link.

The first link in the articulated structure is a base. The end of the structure is
an end effector. The position and the orientation of the base is expressed in the
global coordinates. Every articulated structure has one or more end effectors and
the motion control of the structure is done through these end effectors. In many
cases, the end effector takes place at the end of the structure, like palm, finger,
foot, head, etc.

Figure 2: Degrees of freedom of a) the articulated structure (5 DOF) b) the end
effector.

The state of the articulated structure is represented by a state vector
0(6;,---,0,) in the joint (angular) space. The position and the orientation of the
end effector is represented by the end effector position Xgg(z,y,2,0,,60,,6,) in
Cartesian space. The relations between the state vector # and the end effector
position Xgp are expressed by equations (1) and (2).

Forward kinematics Inverse kinematics

Xep=f(0) (1) 0) = fHYXer) (2)



The complexity of the articulated structure is expressed by the term degree of
freedom (DOF). The DOF of the articulated structure is the number of independent
variables necessary to specify the state of the structure.

For example, if the joint could revolute in n axes, the degree of freedom of that
joint is n. When the structure (Figure 2a) consists of three joints and two of them
could revolute in two axes and one could revolute in one axe, the DOF of that
structure is 5.

The notation for some characteristics differs in various works. The terms in this
paper are defined as follows:

State vector (angles) 0(61,---,0,)

Transformations (generally) from link i — 1 to link 7 At (0)

Initial (base) global transformation of articulated structure A

Total end effector position in the global coordinates An(0) = ﬁ At (6)
i=1

As the inversion of the function f is not trivial in all cases, a number of ap-
proaches solving the computation of the state vector has been proposed. The next
section gives an overview of several such methods.

3 Solutions

A number of methods and their combinations could be used to solve the inverse
kinematics. Using each of them separately brings some advantages and also disad-
vantages. Therefore it is useful to combine them together and often combine them
with additional approaches.

3.1 Algebraic methods

The algebraic solution of equation (2) exists only for a restricted class of cases.
The joint angles could be expressed using the end effector position. The number of
nonlinear equations increases with the DOFs (n DOFs mean n equations). Each
joint angle — one by one — could be solved by the system of n equations [Chi96]:

141160 = 47'61) - 4, )

The m + 1% joint angle is expressed using the m previous angles. The last joint
angle is expressed only by the end effector position and orientation.

The forward kinematics solution for the end effector position Xgg(z,y) in 2
DOF structure could be expressed as follows:

XEE = (ll COS 91 + l2 COS(01 + 92), ll sin 91 + lg Sin(01 + 02)) (4)



Thus, by applying elementary trigonometry the inverse solution is:

6. — —(lgsinOg)x + (11 + Iy cos 63)y
20,1y L= (losinbs)y + (11 + Iy cosby)z

(5)

As the DOFs for most of cases are higher, the state vector is not analytically
expressible using such a trivial way. Therefore more sophisticated approaches are
necessary.

3.2 Iterative methods

Iterative methods solve the inverse kinematics problem by using a sequence of steps
leading to incrementally better solution for the joint angles. The goal is to minimize
the difference between the current and desired positions of the end effector. The
next sections explain methods leading to the incremental improvement in joint
angles space.

3.2.1 Jacobian inversion method

The Jacobian is the multidimensional extension to the differentiation of a single
variable [WW92]. As it was mentioned in the introduction, there is a relation
between the Cartesian space of the end effector X and the joint space of the joint
angles #. The Jacobian, in fact, transforms the differential angle changes to the
differential motions of the end effector [Mck91].

X = J(0)d (6)

The vector X represents the linear velocity (dz,dy,dz) and rotational velocity
(0z,0y,0,) of the end effector and @ represents time derivative of the state vector
(rotational velocity for each joint).

Since the unknown is 9, the Jacobian inversion is needed. Hence, the equation
(6) is transformed to the form:

0=JY0)X (7)

Jacobian construction

If the analytic expression is known for equation (1), then the evaluation of the
Jacobian could be done by straightforward differentiation. For example, equation
(6) for a structure with 6 DOF in 6D Cartesian space (3D for position, 3D for
rotation) — (Figure 2b) can be expressed as:

[xayazaexaeyaez] = [a—tgj] [01a02703:94a05796] (8)
If the analytic expression is unknown for equation (1), numerical construction
for the Jacobian is used. The Jacobian is obtained column by column from the

transformation matrices A; [Chi96].



Iterative model

The Jacobian inversion method works in two phases. The partial transformations
based on the joint angles are computed in the first phase. After that, the end
effector position and the Jacobian are computed. Then the end effector location is
changed.

The second phase contains Jacobian matrix inversion and joint angles changes,
using equation (7). The next step lies in the repetition of step one and in the
change of the end effector position. The obtained differential of the end effector
position dX enters in phase two. The mentioned phases repeat until the error
(difference between the current and the desired location of the end effector) comes
below a defined value € or the maximal number of iteration steps is reached:
|| J(d0) — dX || < e VvV iter > maxzxiter (Figure 3).

Cartesian de =Jtdx Join
velocities velocities

dX=Jde

Figure 3: The iterative model for the Jacobian inversion method.

3.2.2 Optimization based method

The basic idea of optimization based method is to take a look at the primary equa-
tion § = f~1(X) as minimization problem [Wel93]. Thus, the previous equation
could be transformed into

E(0) = (P - X(0))" (9)

After that, standard iterative non-linear optimization techniques could be applied
to minimize error function E(#), where P is the goal position of end effector and
X (0) is the current position of the end effector [PFTV90].

Gradient-based optimization could be also used. This may increase the compu-
tation cost in each iteration step, but the convergence rate should be better and
the number of iteration steps should decrease.

3.2.3 Cyclic coordinate descent (CCD)

Another interesting approach is represented by CCD method [Wel93], [Ebe01].
The CCD is based on minimization applied to each joint separately. The steps
in one pass are ordered from the most distant segment to the base segment. The
difference between this method and the previous one is that just one joint variable
is modified in one step. A number of passes are made over the manipulator to find
the global minimum of equation (9).



According to the fact, that the only one joint variable is changing along the
minimization process, an analytic solution could be used. That significantly speeds
up the minimization problem [Wel93].

3.2.4 Genetic programming

Genetic programming is very interesting approach often used in minimization pro-
cess. The first way (local solution) of application is to use genetic programming
as one of numerical methods to minimize equation (9). In the second way (global
solution), this method could be employed to optimize motion of a model as whole.

The goal in the local solution is to achieve the desired position of one end
effector, whereas in the global solution, the goal is to produce such a sequence of
motions, so that the whole model can reach the desired position and orientation.
The first approach is directly connected to solving inverse kinematics.

That means, the genetic programming based motion control could be applied
not only to the level of partial movements, but it could be also used to control high
level motions (like step, jump, etc.) [Srk99]. The motion simulation is controlled
with partial abstraction and by goals for achievement.

There are conditions and limits constructed for each certain task and the eval-
uation function of success. A number of solutions are combined in each genera-
tion and the best solutions according to evaluation function are chosen. The next
generation arises by crossing (hybridization) and mutating of best solutions from
previous generation. The generations repeat until desired result is achieved.

3.2.5 Jacobian transpose method

Jacobian transpose method removes the problematic Jacobian inversion mentioned
above. The annoying inversion is replaced by a simple transposition [Wel93]. The
idea is based on the principle of virtual works and generalized forces [Pau81].

The external force F = [fy.fy, [z, My, my, m,|7 (consisting of pull f and twist
m) is applied to the end effector of the articulated structure and results inter-
nal forces and torques in the joints. The relation between the force F' and the
generalized forces 7 is expressed as

T=J'F (10)

The generalized forces 7 could be expressed using either the joint variable accel-
erations 6 or joint velocities # [NN90]. The joint accelerations could be used for
an accurate dynamic simulation of the manipulator motion. Because the method
is not interested in the dynamic behavior, only the joint velocities € are used for
the necessity of this method. Thus equation (10) is supplied by another form:

0=J'F (11)

The force is proportional to the velocity in equation (11). That means the object
moves as long as the force takes effect. The inertia and torques are not applied.
The scheme of the iterative model is demonstrated by the Figure 4.



A

f(6)

Figure 4: Iterative model adopted for the Jacobian transposition method.

The force F corresponds to error function FE(t) expressed by equation
E(t) = Xa(t) — X.(t). E is the error along the time-varying trajectory, X,
is current position and X, is desired trajectory of the end effector.

3.3 Summary of problems and benefits
Algebraic method

The disadvantage of this method is that it does not guarantee a solution for general
structure and even if it exists, it is complicated for increasing DOFs. The second
handicap is that the solution is not unique and therefore is not continuous.

However, the generalized solution can be derived for a up to 6 DOF articulated
structure (often used in robotics). A solution also exists for structures with more
than 6 DOF, when the features of the structure satisfy some conditions [Cra89],
[MC94], [MZ94], [Chi96].

Jacobian inversion

One of the problems associated with the Jacobian inversion method is the matrix
inversion. The Jacobian matrix dimension grows with the degree of freedom. The
computation cost of the matrix inversion is growing quite fast with the dimension.
Therefore, this method becomes consuming a lot of time for articulated structures
with a large number of DOF (e.g. snake, chain, etc.).

In the case when the degree of freedom is different than 6 in 3D space (3
for location, 3 for rotation) — generally, if the dimension of X is not equal to the
dimension of #, the Jacobian matrix is rectangular and consequently not invertible.
In that case, pseudo-inversion could be used for the rectangular matrix inversion
by singular value decomposition [GK65]. The disadvantage of the pseudo-inversion
is that some numerical errors appears, because that method is approximate and
local. If the change of X is too large, according to the facts mentioned above,
errors often occur. These errors are called “tracking errors” [WW92]. The solution
of that problem is to divide the path into smaller steps.

When the rank of the Jacobian matrix differs from the DOFs (some rows are
linearly dependent), the number of solutions is infinite and the matrix is not in-
vertible. Singularities usually occur in the full extended state (Figure 5a — the



Figure 5: a) Singular state. b) Il conditioned state.

change of §; and/or 6, causes the same differential movements of the end effector).
There is not just a single solution in that situation, a choice has to be done, or the
prevention of such states (e.g. used in robotics — singular states are not allowed).

If the structure is near the singular state or at the transition between singular
and nonsingular state, high velocities and oscillations occur. Example of such a
problematic state is shown in Figure 5b. In the example AX — 0, A /A 0. It
means that the distance in Cartesian space is small, but the distance in joint space
is large (compared to the Cartesian space). That state is called “ill conditioned”
[(WW92].

The good feature of this method is its expected behavior. The articulated
structure behaves like rubber. This method is also quite fast for smaller articulated
structures therefore it could be used in the real time animations.

Optimization

In the interactive environments, there must be used such an optimization algo-
rithm, running as fast as the refresh rate needs. That could be a problem, because
some optimization-based algorithms are quite “dumber”. When such algorithm is
used, some problems could appear. For example, the algorithm jams in the local
minimum and is not able to find the global solution. Some more sophisticated
algorithms may be used, but the time cost could be probably higher.

The good idea is the use of any minimization solver which could be applied like
plug-in module. It is easy to change the solver and it allows usage of handy solver
according to a specific situation. There are not problems with matrix inversion as
well.

Cyclic coordinate descent

This method works fine for simple structures, but for more complicated ones could
be worse. When the change must be done near the base, the algorithm must pass
all the joints in the path from the end effector to the changing joint and therefore
the computation slows down [Wel93]. The next feature of the CCD method is that
it produces motion more like a void chain than a rubber. That behavior could
hamper in the figure animation.

The nice feature of the CCD method is that this method is free of singularities
and it does not include matrix inversion. In many cases, only few passes are enough



to achieve a sufficient precision and therefore this method could be used in real
time applications.

Genetic programming

Genetic programming based methods are very interesting, but very slow in general.
Also, an appropriate solution is not guaranteed (in reasonable time).

On the other hand, this method is useful for more complex and independent
motion control and animation, as e.g. walk, creep, etc. Also multiple re-usability
of that approach is possible.

Jacobian transposition

Some troubles like in the Jacobian inversion are still there, e.g. singularities, ill
conditioning, but one huge problem — matrix inversion — disappears (different
DOF and state space dimension).

4 Implementation

Creation of the articulated structure is basic and important first step in animation.
Sufficient time should be dedicated to structure abilities specification. It could
spare a lot of time in implementation.

For easiness in the implementation, it is handy to select the proper model rep-
resentation. The model should be simple on the one hand and general on the other.
Than a standard (general) algorithm could be applied without larger customiza-
tion. Such a representation is also useful in various programs and environments.

The last but not least advise is to strictly follow the transformation chain and
the sequence of partial operations, because the operations are not commutative in
general, and in opposite case, the structure could have a strange behavior. The
same order of operations is also needed in a hardware implementation.

5 Conclusions

Inverse Kinematics experienced a great evolution in the last twenty years. Many
methods to solve have been developed and many approaches applied. A special
branch was created around these ideas and other thoughts are still coming.

The basic methods were approached — Jacobian inversion, Jacobian transpo-
sition, Optimization, Cyclic coordinate descent, Genetic programming. The main
ideas in each method were described. A comparison was based on access to prob-
lem and ideas of solutions. Every method mentioned above could be applied as
solver for inversion kinematics in articulated figure animation. Advantages and
disadvantage of these methods were mentioned in Section 3.3.



The basis for further work should be the implementation of several methods
and comparison based on features and behaviors. The interesting objective is also
to combine some of the methods together and thus, eliminate some problems. Also,
a comparison of possibilities to incorporate constraints is a possible way to explore.
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