
Hardware Accelerated Per-Pixel Shading

Gerald Schröcker
gerald@schroecker.info

Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

Today graphics accelerators are rapidly becoming programmable. This allows to
write custom shading algorithms which evaluate a shading equation per-pixel in
real-time. In this paper we outline the main features of the used graphics hard-
ware, then we describe the techniques to achieve high-quality local illumination
using Phong shading. Additionaly we integrate bump mapping as a technique
for simulating the effect of light reflecting from small surface perturbations to
enhance the realism without increasing the geometric complexity.

KEYWORDS: Per-Pixel Lighting, Phong Shading, Bump Mapping, GeForce3

1 Introduction

Until recently, the major concern in the development of new graphics hardware
has been to increase the performance of the traditional rendering pipeline. Today,
graphics accelerators with a performance of several million textured, lit triangles
per second are within reach even for the low end. As a consequence, the focus is
beginning to shift away from higher performance towards higher quality renderings
and an increased feature set [8]. Traditionally hardware renderers only support the
Phong [16] lighting model in combination with Gouraud [7] shading, which means
that the actual Phong lighting equation is evaluated per vertex, and simple lin-
ear interpolations is used for shading pixels. This method is relatively easy to
implement in hardware, but for a moderately tesselated surface the drawbacks
of Gouraud shading as diffused, crawling highlights and Mach banding become
evident [15]. However, consumer-level graphics hardware is rapidly becoming pro-
grammable at both the vertex processing and the fragment processing stage. This
allows to write custom shading algorithms – so-called shaders – which evaluate a
shading program per-pixel in real-time. These shading algorithms can more real-
istically model the enormous variety of materials and lighting effects that exist in
the real world. In this paper we will develop shading techniques which run in one
rendering pass on advanced graphics accelerators.

gerald@schroecker.info

2 Survey

2.1 Lighting Models

The first lighting model which accounts for diffuse surfaces was developed by
Gouraud [7]. In 1975 Phong [16] proposed the first model in computer graphics able
to deal with non-diffuse surfaces. In this model the color of a pixel is expressed as a
linear combination of a diffuse part and a specular part. Blinn improved the phys-
ical correctness of this model and made it visually more satisfying. This so-called
Blinn-Phong model [2] is commonly used for hardware accelerated lighting. These
early models were ad hoc empirical models without any exact value of energy or
intensity. The most important of physically more correct models is the one by Cook
and Torrance [4], it is based on a Gaussian micro facet distribution. In addition
to isotropic models, anisotropic models like the model from Banks [1] have also
been proposed. As mentioned above, hardware based rendering methods usually
use the Blinn-Phong model [2], because of its mathematical simplicity. However,
Heidrich et al. [8] recently showed how to handle more complex BRDF models by
factoring the Banks model and the Cook-Torrance model analytically, and storing
the factors in texture maps. The original model can then be reconstructed using
texture mapping. Kautz et al. [9] and McCool et al. [13] reparameterized BRDFs
and then decomposed them numerically. Again the original model is reconstructed
using texture mapping.

2.2 Bump Mapping

Bump mapping was originally introduced by Blinn [3]. It has recently found its way
into hardware-accelerated rendering. The first technique that worked on consumer
graphics hardware is called texture embossing, it is a multipass method that is
quite limited. Dot product bump mapping [10] is a better method, it directly stores
the normals of the surface in texture maps, but needs advanced hardware fea-
tures, namely the ability to compute per-pixel dot-products. Graphics hardware
researchers have also proposed a variety of approaches for implementing bump
mapping through dedicated hardware schemes. Evans & Sutherland [5] and SGI
[15] have both proposed bump mapping approaches for high-end graphics hard-
ware. The SGI technique introduced lighting in tangent space, which is also used
in this paper.

3 Hardware Architecture

For real-time rendering a completely programmable graphics solution is impractical
– at least for now. Therefore programmability is enabled in three interesting areas,
while leaving the rest of the graphics pipeline running as it always has. Until
now these features are optional extensions to the OpenGL standard [18] and thus
hardware dependent. Since every manufacturer of graphics hardware defines its

own extensions1, we will restrict our description to graphics boards with Nvidias
GeForce3 processor.

3.1 Vertex Shader

A vertex shader [12] is a small assembly-language program. When enabled, it re-
places the transform- and lighting-computations of the fixed-function pipeline. A
vertex shader operates on a single vertex at a time. It does not operate on primi-
tives and is unable to generate new vertices. Frustum clipping, perspective divide
and viewport transformation are left to fixed processing stages. The computation-
model of vertex shaders is straightforward. For every vertex to be processed, the
vertex shader executes its program. It has access to four different types of memory
locations: the per-vertex data of an incoming vertex, constant memory, temporary
registers, and per-vertex output-registers (Figure 1). The basic data type is the

Vertex Attribute
Registers

CPU

Vertex Result

Registers

Program
Parameter
Registers

Temporary
Registers

V[0] … v[15]

C[0] … c[95]

R0 ... R11

o[HPOS] ... o[TEX3]

r

r

r/w

w

Address Register

A0.x

Triangle Rasterizer

Input:

16 quad floats,
flexible mapping

Up to 128 Instructions

Output:

13 quad floats,
fixed mapping

Registers:

12 quad-floats
(read/write)

Constants:

96 quad-floats
(read-only)

Figure 1: Vertex Program

quad-float vector. In order to deal with efficient scalar packing and extraction,
the input vectors can have their components arbitrarily rearranged or replicated
(swizzled), output writes have a component write mask. The instruction set can be
divided into vector, scalar and miscellaneous operations. No branching, jumping or
looping is supported to maintain pipeline efficiency. All instructions have the same
latency, this limits the complexity of any instruction but improves programmability
and simplifies the hardware.

3.2 Texture Shader

Texture shaders [11] provide a superset of conventional OpenGL texture address-
ing [18]. They expose a number of operations that can be used to compute texture
coordinates per-fragment rather than using simple interpolated per-vertex coor-
dinates. The shader operations belong to four main categories: 1. Conventional

1the upcoming OpenGL 2.0 standard [17] will hopyfully remedy this situation

Texture Access, these are the standard 1D, 2D, 3D texture access modes, further-
more cube map textures and rectangular textures are supported. 2. Dependent
Texture Access, these modes use the result from a previous texture stage to affect
the lookup of the current stages. Dependent 2D scaling and biasing is possible.
3. Dot Product Texture Access, these operations calculate a high precision (float)
dot product from texture coordinates and a vector derived from the results of a
previous shader stage. The resulting scalar value is used for accessing a texture. 4.
Special Modes, these operations cull the current fragment or convert the texture
coordinates directly to colors without accessing a texture. In order to support the
various per-pixel math that must be done in the texture shaders, a number of new
texture formats for encoding vectors are introduced. Most notably signed texture
formats and 16 bit high precision formats.

3.3 Register Combiners

In order to gain explicit control over per-fragment computation, Nvidia provides
the register combiners extension [11]. With this extension enabled, the standard
OpenGL texture environment is completely bypassed and substituted by a register-
based unit. This unit consist of eight extremely flexible general combiner stages
(Figure 2) and one final combiner stage. In a register combiner per-fragment in-

discard

2 2

3 3

Figure 2: A general combiner stage supports arbitrary register mappings and com-
plex arithmetic computations.

formation is stored in a set of input registers. The contents of these registers can
be arbitrarily mapped to the four variables A, B, C and D. After combining these
variables, e.g. by dot product (A ·B), the results are scaled and biased and finally
written to arbitrary output registers. The output registers of the first combiner
stage are then the input registers for the next stage. An additional feature is, that
fixed point color components, which are usually clamped to a range of [0, 1] can
internally be expanded to a signed range [-1,1]. This allows vector components to
be stored in the color registers without the need to scale and bias them. The result-
ing fragment output from the final combiner stage is processed with the standard
OpenGL per-fragment operations, like depth test or alpha-blending.

4 Implementation

4.1 Lighting Model

Two kinds of surfaces can be distinguished according to the way they reflect light.
On one hand, there are diffuse surfaces for which light is reflected in every direction
(Figure 3a). On the other hand, there are specular surfaces for which light is
reflected only in a small area around the mirror direction (Figure 3b). There are

(a) Diffuse Reflection (b) Specular Reflection

Figure 3: Blinn-Phong Lighting Model

many lighting models to describe this behavior. For simplicity we will use the
Blinn-Phong [2] lighting model (Formula 1).

Iout = ILightkd max(0, �N · �L) + ILightks max(0, �N · �H)n (1)

ILight is the color of the light, kd is the diffuse color, ks is the specular color; n is the

specular exponent which defines the shininess of the surface. �N is the normalized
surface normal, �L is the normalized direction vector pointing to the light source.
The half-angle vector �H is the half-way unit vector between �L and �V defined in
Formula 2.

�H =
�L + �V∣∣∣�L + �V

∣∣∣ (2)

Where �V is the normalized vector to the viewer. It is important to max out negative
dot product terms, as a negative dot product indicates that the point is in shadow
and receives no light. The key aspects for successful per-pixel lighting are to provide
the needed vector parameters (�N , �L and �H) for evaluating the lighting equation
and to compute the per-pixel dot products. In the next Section we will see how to
interpolate and normalize this vectors.

4.2 Parameter Interpolation and Normalization

Phong shading implies that for every pixel, the vectors being involved in the shad-
ing equation are interpolated, normalized and their dot product computed. With-
out normalization the highlights get lost across a polygon. To be general, the
interpolation of two vectors �v1 and �v2 is considered. This can be any vectors: the
light vector �L, viewing vector �V or normal vector �N .

4.2.1 Spherical Interpolation

The dot product between two vectors is only equivalent to the cosine of the angle if
the two vectors are unit vectors. So the two vectors �v1 and �v2 should be interpolated
in a way that the interpolant �v(t) is moving uniformly between the two vectors and
its length remains one. As [14] point out this interpolations works on the surface
of the unit sphere and therefore it is called spherical interpolation (Formula 3).

�v(t) =
sin(1 − t)α

sin α
�v1 +

sin(t)α

sin α
�v2 (3)

Where cos α = �v1 · �v2. Unfortunately spherical interpolation is not available on
current graphics accelerators, only linear interpolation is supported. When us-
ing linear interpolation this results in denormalized vectors (Figure 4) and wrong
shading intensities.

V1

V(t)
V2

Spherical

Linear

Figure 4: Linear Interpolation versus Spherical Interpolation

4.2.2 Cube-Map

One method to renormalize the vectors is to use a cube map texture. Cube map
texturing is a form of texture mapping that uses a 3D direction vector built from
the texture coordinates (s, t, r) to access a texture that consists of six square
2D images arranged like the faces of a cube [10]. In order to normalize a vector,

(a) Directional Access (b) RGB Coded Normalization
Faces

Figure 5: Cube Map

the cube map can be thought as a way to store a look-up table indexed by a
direction vector (Figure 5a). This means that vectors of varying length which
point in the same direction do not change the lookup result. The normalization

given in Formula 4 is precomputed for discrete values of �v and stored in the cube
map.

�v′ =
�v

‖�v‖ =
�v√
�v · �v =

�v√
�v2

x + �v2
y + �v2

z

(4)

Since parts of the render pipeline work only with positive values, the signed vector
components must be range compressed from [−1, 1] to [0, 1] and stored as colors
(Figure 5b).

4.2.3 Register Combiners

A faster technique for normalization without using texture maps is to use the reg-
ister combiners extension [11]. With register combiners only addition, subtraction,
multiplication and dot products are possible (Section 3.3). Direct computation of
the normalization equation shown in Formula 4 is not possible. Given that the vec-
tor �v is derived from the interpolation of a unit-length vector across the polygon
and the angle between the per-vertex vectors is not too big, this expression can be
approximated by a Taylor series (Formula 5).

�v′ = �v

(
1 − 1

2
(�v · �v − 1) +

3

8
(�v · �v − 1)2 − 5

16
(�v · �v − 1)3 + . . .

)
(5)

Given the assumptions mentioned above and the limited 8 bit precision in the
register combiners this expressions is truncated after the linear term (Formula 6).

�v′=̃
�v

2
(3 − �v · �v) = �v + 0.5�v(1 − �v · �v) (6)

The last expression can be implemented directly with register combiner arithmetic
in two general combiner stages.

4.3 Tangent Space

Lighting can be computed in an arbitrary 3D coordinate system as long as all
vector parameters involved are oriented with respect to the same coordinate system
[10]. This allows one to select the most convenient coordinate system for lighting.
Tangent space is just such a local coordinate system. There are two reasons why
lighting in tangent space is very efficient. The first one is that the normal vector �N
equals always (0, 0, 1) in tangent space, therefore �N needs no longer interpolated
and normalized. The second reason is that in tangent space the perturbed normal
for bump mapping can be read directly from a texture2 as Kilgard [10] develop.

The orthonormal basis for tangent space is formed by the surface normal �N , the
surface tangent vector �T , and the binormal �B defined as �N × �T (Figure 6) For the
illumination calculation to proceed properly, the light and half-angle vectors are
transformed into tangent space via a 3 × 3 matrix whose columns are �T , �B, and
�N . The transformations of the light and half-angle vectors should be performed at

2as long as some conditions, mainly the so-called square patch assumption are observed [15, 10]

Figure 6: Definition of Tangent Space

every pixel; however, if the change of the local tangent space across a polygon is
small, a good approximation can be obtained by transforming the vectors only at
the polygon vertices. They are then interpolated and normalized in the polygon
interior. Therefore tangent space is constructed efficiently on a per-vertex basis
with the help of a vertex shader (Section 3.1).

4.4 Bump Mapping

Until now we have almost exclusively treated Phong shading. An additional way
to add more realism to a rendered scene is to use bump mapping. It allows to
increase the visual detail of a scene without requiring excessive amounts of geo-
metric detail. It is a technique that was invented by Blinn [3] to add roughness
or wrinkles to a smooth surface. It does not change the underlying geometry of
the model, but fools the shading to produce an interesting surface by using a per-
turbed surface normal �N ′ read from a normal map (Figure 7a). Bump mapping
is a very efficient approach because it decouples the texture-based description of
small-scale surface irregularities used for per-pixel lighting computations from the
vertex-based description of large-scale object shape required for efficient transfor-
mation, rasterization and hidden surface removal [10]. Since lighting is already

(a) Perturbed Normals
from the Normal Map

(b) Color Coded Nor-
mal Map

Figure 7: Bump Mapping

done in tangent space – where the large-scale normal �N is always (0, 0, 1) – the

perturbed small-scale surface normal �N ′ can be read directly from a texture map.
This so-called normal map can be constructed from a height map by using finite

differences to get the local tangent plane and the corresponding surface normal
(Figure 7b).

4.5 Self Shadowing

With bump mapping, there are actually two surface normals that should be consid-
ered for lighting. The unperturbed normal �N is based on the surface’s large-scale
geometry, while the perturbed normal �N ′ is based on the small-scale structure. Ei-
ther normal can create self-shadowing situations. Figure 8 shows a situation where
the perturbed normal �N ′ is subject to illumination. However, the point on the sur-
face should not receive illumination from the light because the unperturbed normal
�N indicates that the point is in shadow due to the large-scale geometry [10]. In

Figure 8: Self Shadowing

order to account for self-shadowing due to the perturbed surface normal and the
unperturbed normal the lighting equation 1 should be rewritten as in Equation 7.

Iout = ILightsselfkd max(0, �N ′ · �L) + ILightsselfks max(0, �N ′ · �H)n (7)

where

sself =

{
1 �L · �N > 0

0 �L · �N ≤ 0

Without this extra level of clamping, bump-mapped surfaces can show false il-
lumination artifacts in otherwise dark regions. In practice, the step function of
sself shown above can lead to temporal aliasing artifacts, as pixel along the self-
shadowing boundary may pop on and off abruptly. Therefore it is better to replace
the step function by a steep ramp [10].

5 Results

5.1 Normalization

Figure 9 shows the effect of different vector normalization methods. So as to avoid
precision problems the specular exponent is relatively small (n = 8). Gouraud
shading to the left is only shown for reference purposes. Without normalization it
is clearly visible, that the shape of the highlight and intensity are not correct. With
register combiner normalization the results are astonishingly good, although that
only a linear square root approximation is used for normalization. The visible band-
ing effects are primary caused by the limited precision for the exponentiation of the

Figure 9: Quality of Different Normalization Methods

specular intensity. 8 bit cube map normalization works not as good as expected.
One cause is that one more bit in comparison to register combiner normalization
gets lost as the whole range [−1, 1] must be range compressed to [0, 255] (register
combiners work internally with 8+1 bits so the range is [−255, 255]). The best
render quality is reached by using a 16 bit normalization cube map in combination
with a high precision dot product in the texture shaders.

5.2 Precision

Computations in the register combiners are performed in 8 bit (+ 1 sign bit) fixed
point, this results in precision and dynamic range problems as shown in Figure 10.
In order to isolate precision problems from interpolation and normalization issues
the used sphere model is highly tesselated. In the shader with register combiner

Register Combiner
8 Bit fixed point

Texture Shader
Lookup Table

Gouraud
32 Bit floating point

Figure 10: Comparison of Precision Problems

normalization, the exponentiation is computed by repeated self multiplication, for
higher specular exponents this results in visible banding. The shader with table
lookup performs much better. In this shader the result of a high precision dot
product between �N and �H is used to access a texture where the specular intensity
is stored. These values are stored as 8 bit values, but through the use of linear
interpolation between the table values the quality is very good. The standard

Gouraud shader is used only for reference purpose as no per-pixel shading takes
place. It should be noted, that in the inner zone of the highlight the Gouraud
shader performs still better than the texture shader, because the exponentiation
function gets very steep near one and there are too few values in the table to
interpolate perfectly [6].

5.3 Bump Mapping

After the qualitative comparison of different implementation variants, we will now
examine how these quality differences show up with activated decal and bump map
textures. Unfortunately bump mapping or even texture mapping is not possible
for shaders with 16 bit cube map normalization as all four texture units are occu-
pied by this task. Surprisingly the different normalization techniques and precision
issues shown in the preceding two Sections have very little impact on the obtained
image quality when bump mapping is used (Figure 11). We assume that the dif-

No Normalization
Register Combiner

Normalization

8 Bit Cube Map
Normalization

Texture Shader Dot Product
No Normalization

Figure 11: Comparison of Different Bump Map Methods

ferent surface normals read from the normal map result in rapid changing lighting
intensities and therefore the less perfect shading qualities get lost in noise.

5.4 Timing

Finally we compare the render speed of different shaders. All timings have been
done for a screen-filling mesh with 20k triangles (results for other triangle counts
are similar). We would like to point out some particular results from Table 12a.

(a) Render Time Table (b) Render Time Chart

Figure 12: Comparison of Shader Render Times

For simple Phong shading without bump mapping or texturing, the shader with
register combiner normalization runs at 80% of the speed of standard Gouraud
shading, although much better visual quality is obtained (Figure 9). The shader
with 16 bit cube map normalization and texture shader dot product which delivers
the best image quality (Figure 10) runs with about half the speed of Gouraud
shading. If shading with a decal texture and bump mapping is enabled, the shader
with register combiner normalization runs also with slightly less than half the
speed of standard Gouraud shading although the visual detail and shading quality
are much better (Figure 11).

6 Conclusion and Future Work

Vertex programs, texture shaders and register combiners provide a way to take
control of the graphics pipeline at various stages. All these pieces together enable
high quality real-time per-pixel shading. In the future one can expect to get even
closer to a fully hardware-accelerated RenderMan [19] like programmable shading.
Despite the great technological progress, a few drawbacks make it difficult to de-
velop high-quality shaders: it would be very helpful if length preserving specular
interpolation would be available, since the currently supported linear interpola-
tion leads to a number of problems and makes expensive per-pixel normalization
necessary. The register combiners are a possible way to implement programmable
per-pixel operations, but a more flexible shader definition language as proposed in
the upcoming OpenGL 2.0 standard [17] would be helpful.

In our current work, the vectors used to construct the tangent space are derived
from the analytical definition of the used surface. In order to make the promising
results for high-quality per-pixel shading applicable to a wide range of applica-
tions these vectors should be computed from an ordinary triangle mesh. Another

reasonable extension would be to apply a more realistic shading model than the
currently used Blinn-Phong [2] shading model. For example the Cook-Torrance [4]
model or even true BRDF distributions [13] could be used. Kautz [9] describe a
very promising approach which unfortunately needs too many render passes on
current hardware.

References

[1] David C. Banks. Illumination in diverse codimensions. In Proceedings of
SIGGRAPH ’94, pages 327–334, 1994.

[2] James F. Blinn. Models of light reflection for computer synthesized pictures.
Computer Graphics, 11(2):192–198, July 1977.

[3] James F. Blinn. Simulation of wrinkled surfaces. Computer Graphics,
12(3):286–292, August 1978.

[4] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics.
volume 15, pages 307–316, August 1981.

[5] Muchael Cosman and Robert Grange. Cig scene realism: The world tomorrow.
In Proceedings of I/ITSEC, page pp. 628, 1996.

[6] Andrej Ferko, Markus Grabner, Anton Mateášik, Gerald Schröcker, and
Marek Zimányi. On phong’s model alternatives.

[7] Henri Gouraud. Computer display of curved surfaces. IEEE Trans. Comput-
ers, C-20(6):623–629, 1971.

[8] Wolfgang Heidrich and Hans-Peter Seidel. Realistic, hardware-accelerated
shading and lighting. In Siggraph 1999, Annual Conference Proceedings, 1999.

[9] Jan Kautz and Hans-Peter Seidel. Towards interactive bump mapping
with anisotropic shift-variant BRDFs. In Proceedings of the 2000 SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, 2000.

[10] Mark J. Kilgard. A practical and robust bump-mapping technique for today’s
gpus. In GDC 2000: Advanced OpenGL Game Development, July 2000.

[11] Mark J. Kilgard. NVIDIA OpenGL Extension Specifications, 11 2001.

[12] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-programmable
vertex engine. In SIGGRAPH 2001, Computer Graphics Proceedings, 2001.

[13] Michael D. McCool, Jason Ang, and Anis Ahmad. Homomorphic factorization
of BRDFs for high-performance rendering. In SIGGRAPH 2001, Computer
Graphics Proceedings, 2001.

[14] Abbas Ali Mohamed. Hardware implementation of phong shading using spher-
ical interpolation. Technical report, Budapest University of Technology and
Economics, 2001.

[15] Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping hard-
ware. In SIGGRAPH 97 Conference Proceedings, pages 303–306, 1997.

[16] Bui-Tuong Phong. Illumination for computer generated pictures. CACM June
1975, 18(6):311–317, 1975.

[17] John Schimpf. Opengl 2.0 whitepaper .
http://www.3dlabs.com/support/developer/ogl2/.

[18] Mark Segal and Kurt Akeley. The OpenGL graphics system: A specification
(version 1.3). Technical report, Silicon Graphics, Inc., 2001.

[19] Steve Upstill. The RenderMan Companion. Addison-Wesley, Reading, MA,
USA, 1990.

http://www.3dlabs.com/support/developer/ogl2/

	Introduction
	Survey
	Lighting Models
	Bump Mapping

	Hardware Architecture
	Vertex Shader
	Texture Shader
	Register Combiners

	Implementation
	Lighting Model
	Parameter Interpolation and Normalization
	Spherical Interpolation
	Cube-Map
	Register Combiners

	Tangent Space
	Bump Mapping
	Self Shadowing

	Results
	Normalization
	Precision
	Bump Mapping
	Timing

	Conclusion and Future Work

