
Collision detection between moving objects using uniform
space subdivision

Smiljan Šinjur
smiljan.sinjur@uni-mb.si

Laboratory for Geometric Modelling and Multimedia Algorithms
Institute of Computer Science

Faculty of Electrical Engineering and Computer Science
University of Maribor

Maribor / Slovenia

Abstract

Fast and accurate collision detection between general solid models is a fundamental problem in
solid modeling, robotics, animation and computer-simulated environments. The most of the
algorithms are restricted to an approximate collision detection. In the paper, we also present an
algorithm for collision detection between 3D objects. The algorithm can be used in simulation
robotics or any other simulation in 3D space. It works only with triangles, so the objects must be
triangulated first, and obtained triangles are tested for collision detection then. Two methods are
described for a triangle intersection test. The first one is a raw method, which tests all pairs of
triangles in the space. Besides it, the improved algorithm with the space subdivision is given.
The raw method is slow and it is not suitable for real time simulation. The space subdivision
method is faster and it is expected to be quick enough for many real time simulations. The
simulation is modelled and visualised in VRML, and the collision test and movement controlling
are implemented in Java.

Keywords: algorithms, collision detection, space subdivision, triangle-triangle intersection,
geometry.

1. Introduction

In recent years, the use of robot systems has rapidly increased, but these systems are still very
expensive. Therefore, they must be protected from any damage. Unfortunately, it is usually
impossible to directly prevent collisions between robots and objects surrounding them, while a
robot cannot see its surroundings. A danger of going something wrong with a real physical robot
is large. A small inattention when moving a robot can cause incorrigible damage or high
expenses of repair. A robot could be equipped with “eyes” in a form of sensors and precise
measuring instruments, but this would increase cost significantly. Therefore, it is much cheaper
to use computer simulated robots [1], [2], specially for teaching purposes in robotics. Of course,
it is expected that a collision detection is included in a simulation as well [3], [4]. It prevents
collisions between a robot model and models of other objects. By reporting an error of collision

in simulation, a damage that could be made on a real robot performing the same action as its
model is prevented. But the simulation with collision detection is not usable only for students
learning about robotics. Information obtained from the simulation can also be used to contol a
real robot. A computer model represents a real robot in a virtual world, which is a precise copy
of robot's surroundings. The robot may repeat moves, which were previously recognized safe by
simulating them on robot's model, and of course, the robot should not perform an operation, if its
model collided with some virtual object during simulation.

The previously mentioned papers [1], [2] describe controlling a physical robot with a
computer via internet. In this paper, we give a description how the collision detection is
performed in simulation. This simulation is programmed with VRML and Java. The Virtual
reality modelling language (VRML) is a multi platform file interchange format for building 3D
graphical models. The VRML standard defines semantics found in 3D modelling applications
e.g. construction of geometric primitives, hierarchical transformations, lighting sources,
viewpoints, animation, etc. Java is also a platform independent programming language, which
can interact with VRML scenes. In VRML, we create a virtual robot and the world that
surrounds this robot, and the robot movement is controlled with Java components.

The paper is organised into six chapters. After this introduction, a problem refered in the
continuation is briefly discussed and the main actions are listed. In the third chapter,
triangulation of particular VRML shape nodes is described. Namelly, our collision detection
operates with triangles only, and therefore, more compex shapes have to be triangulated first.
After this, two approaches to collision detection are explained: the raw method and the space
subdivision method. In the fifth chapter, mathematical background of a triangle – triangle
intersection test, which presents the fundamental operation of the collision test, is observed.
Finally, our work is briefly highlighted once more in the conclusion, and our future work in this
field is described.

2. Interaction between VRML and Java in computer simulations

For controlling a real robot by help of a computer, it suffices to calculate whether the robot
collides with some other object, but really efficient simulation should use all abilities of
computer graphics to visualize a model of the robot and its virtual surroundings. We have used a
possibilities offered by VRML to implement this task. The VRML is very suitable for
simulations in 3D environment, because a user only has to describe the geometry and the lighting
parameters of the virtual world, and all the rest is done by the VRML browser. The user need not
think how to implement projections, rendering and navigation in a virtual world, while all these
tasks are provided by the browser already. Besides this, the VRML browsers are typically
designed as additional components to standard internet browsers, and therefore, VRML brings
virtual worlds to internet.

 The main building element in the VRML language is called a node. It unites a set of fields,
which can present parameters of types known from other programming languages, or other
(nested) nodes. In VRML, the geometry is described with so-called shape nodes like a Sphere or
a Cone. There are two possibilities. The first one is to use predefined primitive shapes. These
shapes are boxes, cones, cylinders and spheres, which can ber represented by the Box, the Cone,
the Cylinder and the Sphere nodes. Beside to the primitive shapes, the IndexedFaceSet node can
be used to represent a 3D object. By this node, the face geometry is described. Among all, the
IndexedFaceSet node contains the coord field, which specifies the coordinates of points available
for building faces within the face set. A complex object can be represented by a group of

primitive types, or by a set of faces described by the IndexedFaceSet node, or by a combination
of all these nodes.

Figure 1: A robot arm created in VRML and controled with Java buttons

In Figure 1, an example of a virtual robot is shown. The virtual world is built from different
shapes (Box, Cone, Sphere, Cylinder and IndexedFaceSet). A single shape or more shapes build
objects. Interesting objects presenting the parts of the robot are named joint1, joint2, joint3,
pitch, yaw, roll and gripper. The static table and two cylinders lying on it are also objects. At
first, we have to gather a geometry of all shapes to be able to build geometry of all objects.

Besides nodes and fields, the third consistent part of the VRML language are events. Events
bring dynamics into VRML world. We use them to change coordinates of particular objects.
Actually, each object is nested, one by one, in so-called Transform node, and the values of fields
of these nodes, which represent parameters of geometric transformations (rotations, scalling and
translation), are modified. A user can interactively modify these parameters by using Java
buttons at the top of the window (see Figure 1). In this way, movement of the robot is controlled.
A part of the robot may be moved only if it would not collide some other object (the table, two
cylinders on the table or other part of the robot) in its new position. The collision detection is
also implemented in Java. The shapes are exported from VRML into the Java application first.
While the collision detection is performed on triangles only, the objects being moved have to be
triangulated then. After the triangulation, triangles are tested for intersections. If some
intersection is determined, the application reports error, otherwise transformation parameters for
objects being moved are exported back to VRML (they are routed to appropriate fields in
appopriate Transform nodes), and the VRML browser can visualize modified virtual world.
From Figure 1, it can be noticed that we use the browser Cosmo Player.

Structure of the whole system and interaction of all included parts are shown in Figure 2.

Figure 2: The collision detection system based on interaction of VRML and Java

3. Triangulation

Our collision detection, as mentioned before, is performed on triangles only. Therefore it is
necessary to triangulate every shape. Each shape is decomposed into several triangles. A triangle
is described by three points (vertices): Triangle(P0, P1, P2).

The primitive shapes are triangulated in the following way:
- A box consists of six sides. Each side is a rectangle described with four vertices. Two

triangles are generated for each side. Example of triangulation of a box is shown in Figure
3a.

- A cylinder cosists of the curved side and circular top and bottom side. Every part of a
cylinder is triangulated separately. The circular top and bottom are described with sixteen
triangles each. For better accuracy, a circle can be triangulated with more triangles, but the
collision test would become slower in this way. With less triangles, we gain on time, but lose
on accuracy. The curved side is trianglulated with thirty-two triangles. Therefore, the
cylinder is described with sixty-four triangles. A triangulated cylinder is shown in Figure 3b.

- A cone is consists of a circular bottom and a curved side. The bottom is triangulated in the
same way as the circular top or bottom of a cylinder. The curved side of a cone is
triangulated with sixteen triangles. One vertex of a triangle is the top point of the cone, and
the other two vertices are situated on the circle that represents the bottom. The whole cone
surface therefore consists of thirty-two triangles. An example is given in Figure 3c.

- On a sphere, the grid of meridians and parallels is created first. Here, it is also possible to
change the accuracy of triangulation. Usually, we use sixteen meridians and eight parallels.
At the top and at the bottom of the sphere, we obtain sixteen spherical triangles on each side,
and they are appoximated by planar triangles. Therefore, each of these two regions is
triangulated in a similar way as the curved side of a cone. The region between two
neighbouring parallels consists of sixteen curved rectangles. Each of them is approximated
by a planar rectangle, and then divided into two triangles. The operation is similar to
triangulation of the curved face of a cylinder, but note that the top and the bottom side of the
region between the neighbouring parallels are not of the same size. The number of obtained
triangles on a sphere is two hundred and eighty-eight, if the default accuracy is used. An
example of a triangulated sphere is shown in Figure 3d.

a) b)

c) d)

Figure 3 : Trianglulation of a) Box, b) Cylinder, c) Cone, d) Sphere

Non-primitive shapes represented by IndexedFaceSet are triangulated in the following way.
When building shapes with this node, it must be considered first whether the shape is convex or
concave. All the shapes mentioned before are convex. At the curent level of implementation, our
application also allows only objects with all the faces described by the IndexedFaceSet node
being convex. Typically, the coord field includes the Coordinate node. The coordIndex field
specifies a list of the coordinate indices refering to the points describing a single face or more

faces. The points are specified in the coord field. The convex field is TRUE or FALSE indicating
whether all the faces in the face set are convex. The IndexedFaceSet node has also some other
fields, but they are not so important for representing geometry. More imformation on VRML
nodes and the structure of VRML files can be found in the book [6].

From IndexedFaceSet, we obtain several planar polygons. The polygons can vary in number
of vertices. Each polygon must be triangulated. From a polygon with n vertices {P0, P1, P2,…, Pi,
Pi+1,…, Pn}, we obtain n-2 triangles sharing common top vertex: (P0, P1, P2), …, (P0, Pi, Pi+1), …,
(P0, Pn-1, Pn). In figure 4, an example of a pentagon is given. After triangulation, we obtain three
triangles.

Figure 4: Triangulation of a pentagon

With these nodes (Box, Cone, Cylinder, Sphere and IndexedFaceSet), we can describe any
robot in space. Later, more complex concave faces will also be available in simulation, but for
simple use for educational purposes the described shapes are sufficient.

Every object is described with a list of triangles. Therefore, every triangle has an id, to tell
us to which object the triangle belongs. To every triangle, a 4x4 matrix belongs also. This matrix
describes the position of the triangle in space. When transforming- translating, scaling or rotating
an object – a triangle that presents the object, we change the values in this matrix, not the vertex
coordinates of triangle. Real position of the triangle in space is then obtained by multipling all
the vertices of the triangle by the matrix.

Every object – each triangle that represents the object, also has a tag, which describes,
whether the object is static or dynamic. If the triangle has a static tag, it means that it cannot be
moved. For example, the table in Figure 1 is a static object. Dynamic triangles can be moved.

4. Collision detection

Each triangle in our virtual world has its own id, which identifies the object that the triangle
is a part of. A triangle is also equipped with the matrix, which describes its position in the space.
When some objects are being moved, the matrices of all triangles that represent these objects
must be corrected. Collision detection is then performed on these triangles. Two triangles need
not be tested if :

- they belong to the same object. We suppose that shapes of all objects remain unchanged all
the time. While none of the parts of the robot does not intersect itself at the beginning, this
cannot even happen later.

- they are static. If two static objects do not intersect at the begining of simulation, there is no
need to test a pair of static triangles later in simulation.

Therefore, the triangle-triangle intersection test is made only when we compare two dynamic
triangles or a static and a dynamic triangle. Before calling a routine for triangle-triangle
intersection test, all triangles must be described with points at correct positions. All three points
of both triangles must be multiplied with the transformation matrix of the corresponding triangle.

In the next two subsections, we describe two methods for collision detection. They differ
significantly in number of triangles that have to be tested. First, the raw method is described.
This method is slow and it is not suitable for a real time simulation. The second method is based
on space subdivision. It is expected to be faster than the raw method for more than 80 %.

4.1 Raw method

This is the simplest method for testing collision detection. Each triangle is tested for
intersection with all the others triangles in space. When testing a pair of triangles, both triangles
must present parts of two different objects. There are two possibilities when to stop the
intersection test :

- stop when two triangles intersect. We are only interested in the answer whether any object
collide with any other object. After we have found out that two objects, to which the two
intersecting triangles bellong, collide, there is no need to test whether any other objects
collide.

- stop after all triangles have been tested for collision. Here, we are interested in obtaining the
list of all objects that collide (to draw them with the different color or modify the movement
parameters to avoid collisions). During processing, the list of collided objects is made. When
choosing two triangles for the intersection test, they should present parts of objects, which
are not in the list.

In robot simulation, it is usually expected that the object collision rarely appears. Every user
avoids these situations. The most collision process time is needed when there are no collided
objects in the space. For this situation, the O(n2) time complexity is obtained, where n is the
number of triangles in the space. Actually, the number of intersection tests is a bit lower while
we do not test pairs of triangles gelonging to the same object, but it is in general still O(n2).

If we have a lot of triangles in the space, time spent for testing collisions is very long. For
example, if there are two thousand triangles, the triangle-triangle intersection is made up to two
millions times (probably less, while we do not test triangles of the same object). The robot in
Figure 1 is described with approximately 1500 triangles, and requires about a million of
repetitions of the intersection test. Beside to this, the intersection test is not a simple operation.
For faster and real time simulations, some acceleration technique is recommended. In the next
subsection, we propose one of them – the space subdivision method.

4.2 Space subdivision method

Here, we employ a 3D generalization of the acceleration technique, which is widely used in
applications of computational geometry, especially in GIS, where we have to deal with large

amounts of geometric data. We divide the space into subspaces usually named cells and then
determine for each geometric element (a triangle in our case) the cells that at least partially
contain the object. After this, it suffices to test for intersections only the elements belonging to
the same cell.

It is important to divide the space efficiently. It is recommendable that the cells are simple
shapes to accelerate the containment test whether an element belongs to the cell. The most
natural way is to use rectangles in 2D, and cubes in 3D space, both with the sides parallel to
coordinate axes. Beside to this, it is desired that a particular cell does not contain to many
geometric elements. Note that a particular element can spread over more adjacent cells. We use a
heuristics to determine size of the cells. We use an average length of all triangles in all three
coordinate directions. Dimensions of a cell are then calculated as follows.

[] []

n

xx
n

i
ji

j
ji

j

x

−

= ∈∈
−

=

1

0
,

3..1
,

3..1
))(min)(max(

dim

[] []

n

yy
n

i
ji

j
ji

j

y

−

= ∈∈
−

=

1

0
,

3..1
,

3..1
))(min)(max(

dim

[] []

n

zz
n

i
ji

j
ji

j

z

−

= ∈∈
−

=

1

0
,

3..1
,

3..1
))(min)(max(

dim

It is expected that a particular triangle spreads over a small number of cells, and that each cell
contains a small number of triangles. Consecutively, the number of repetitions of the triangle-
triangle intersection test is also small. The time complexity for this method is O(a m2), where a is
the number of cells, and m is the avarage number of triangles in a particual cell. The value of m
is always much smaller than the number of all triangles in the space (m << n).

The space subdivision is performed only once at the begining of the simulation. The space
has to be limited in a way to assure that none of the objects would fall out of it later after
performing geometric transformations on objects. This seems impossible, but we should not
forget that we usually know the real-world environment of the robot being simulated (the robot is
placed in the room, for example).

Each cell has a list of triangles that are at least partially contained in the cell. If the
transformation is performed on an object, it must be performed on all triangles that form this
object. Such triangle must then be removed from all cells containing it before the transformation,
and inserted in the triangle lists of cells containing the triangle after the triangulation. After this,
a triangle-triangle intersection test for all pairs of triangles in particular cells is performed. To
increase efficiency, any two triangles of the same object and any two static triangles are not
being tested.

This method is in general much faster than the raw method. If we have two thousand
triangles, and assume that we divide the space into one hundred twenty-five cells (five
subdivisions in each coordinate direction), we obtain sixteen triangles per cell in average. The
number of triangle-triangle intersection tests will then be about thirty thousand (152 * 162) or
even less. This number is much smaller than two millions obtained with raw method.

In Figure 5, an example of space subdivision is shown. We use a 2D example, while it is
much easier to draw it, but the situation in 3D space is analogous. We have four triangles A, B, C
and D belonging to four different objects. A lies in the cells [0, 0], [0, 1], [1, 0], [1, 1], [2, 0] and
[2, 1], where the first number in the coordinate pair represents the position of a cell in x-
direction, and the second one in y-direction. B is placed in the cells [2, 0], [2, 1], [3, 0], [3, 1] and
[4, 1]. C spreads over the cells [0, 1], [0, 2], [1, 1], [1, 2] and [1, 3], and D is positioned into the
cells [2, 3], [3, 2], [3, 3], [3, 4], [4, 3] and [4, 4]. We only have to test the pair [A, C], which both
occupy the cells [0, 1] and [1, 1], and the pair [A, B], while both the triangles are partially in the
cell [2, 1]. With the first pair, an intersection is determined, and with the second one, it is not.
Note that the triangles A and C need not be tested in the cell [1, 1] once more, after they had been
tested in the cell [0, 1] already.

Figure 5: An example of space subdivision from 2D space

5. Triangle-triangle intersection

No matter whether we use the raw method or the space subdivision method for the collision
detection, the triangle-triangle intersection test is performed in the same way. This is the basic
operation of our collision detection algorithm and its is executed really often, so it is expected to
be fast enough. The described test is based on fast elimination of triangles which do not intersect.

Three vertices of each of the triangles define a plane in 3D space. Regarding the mutual
position of two triangles and the planes Π1 and Π2 defined be these two triangles, three different
situations are possible.

a) Both triangles define the same plane (Π1 = Π2). The triangles intersect if at least a pair of
their edges (an edge of the first and an edge of the second triangle) intersect, or if one of the
triangles is contained in another one. In this last step, it suffices to test a single vertex of each
triangle. The test can be released as soon as the positive answer is obtained. In the worst case
when the triangles do not intersect, the algorithm has to perform six edge-edge intersection
tests and two point-in-triangle containment tests. While both mentioned tests are of the same
complexity, it is better to build the test on the following statement. Two triangles in the plane
intersect if at least one point of any of these two triangles lies inside another triangle. Here,
we have to perform “only” six operations in the worst case.

b) All three vertices of one of the triangles lie on the same side of the plane defined by another
triangle. The triangles do not intersect for sure.

c) The vertices of one of the triangles lie on different sides of the plane defined by another
triangle. The intersection line between the planes Π1 and Π2 is calculated first. After this, the
intersections between this line and both triangles are calculated. An intersection between a
line and a triangle (or any other convex polygon) is always connected. It can be a point, a line
segment or empty. These two intersections (let us say line segments in general) are then
tested for the intersection. If they intersect, the triangles intersect as well.

6. Conclusions

The paper indroduces the collision detection with space subdivision that can be performed in
simulations. The implementation is based on interaction between the VRML and the Java part.
VRML is employed for geometry representation and visualisation, and the Java application
provides the collision detection and movement control by Java buttons. Objects are triangulated
first. When a part of the robot being simulated is tried to be moved, new positions of this part i.e.
all the triangles forming it are calculated by performing geometric transformations. After this,
the transformed triangles are tested for intersections. The movement is confirm if no
intersections are detected, otherwise the collision detection is reported. The number of triangles
is typically large and testing all the pairs would require a lot of time. The space subdivision is
used to accelerate the algorithm by reducing the number of pairs that have to be tested. The space
is subdivided into cells, and only the pairs of triangles, which belong to two different object and
at least partially lie in the same cell, have to be tested. Experiments have proved that this method
is generally faster than the raw method for approximately 80%.

The described simulation with collision detection is intended to be a part of the bigger project
for controlling a real robot via internet. The simulation part will be generalized to handle objects
with concave sides as well. Besides this, the whole project will be organised as a client-server
application. Users will address the server, and this will communicate to the robot.

Acknowledgements

I would like to thank to Dr. Riko Šafari

ERROR: rangecheck
OFFENDING COMMAND: .pdfshow

STACK:

{--show-- }
(-)
[0]
(-)

