Collision detection between moving objects using uniform
space subdivision

Smiljan Sinjur
smiljan.sinjur@uni-mb.si

Laboratory for GeometridModelling and Multimedia Algorithms
Institute of Computer Science
Faculty of Electrical Engineering and Computer Science
University ofMaribor
Maribor / Slovenia

Abstract

Fastandaccuratecollision detectionbetween generadolid models is afundamental problem in
solid modeling, robotics, animation and computersimulated environments.The most of the
algorithms arerestricted toan approximatecollision detection. Inthe paper,we alsopresentan
algorithmfor collision detectionbetween 3Dobjects.The algorithm can be used insimulation
roboticsor any othersimulation in 3Dspace. ltworksonly with triangles, sdhe objectsmustbe
triangulatedirst, andobtainedtriangles argestedfor collision detectionthen. Two methods are
describedor a triangle intersection testThe first one is a raw method,which testsall pairs of
triangles inthe space Besides it,the improvedalgorithmwith the spacesubdivision is given.
The raw method isslow and it is not suitablefor real time simulation. The spacesubdivision
method is fasterand it is expected tobe quick enoughfor many real time simulations.The
simulation ismodelledandvisualised in VRML,andthe collision testandmovementontrolling
areimplemented in Java.

Keywords: algorithms, collision detection, space subdivision, triangle-triangle intersection,
geometry.

1. Introduction

In recentyears theuseof robotsystemdaasrapidlyincreasedbut thesesystems arstill very
expensive.Therefore,they must be protectedfrom any damage.Unfortunately, it is usually
impossible todirectly preventcollisions betweenrobotsand objectssurroundingthem, while a
robotcannotseeits surroundings. Adangerof goingsomethingnvrongwith a real physical robot
is large. A small inattention when moving a robot can causeincorrigible damageor high
expensef repair. A robot could be equippedwith “eyes” in a form of sensorsand precise
measuringnstrumentsput this would increasecostsignificantly. Therefore, it ismuchcheaper
to usecomputersimulatedrobots [1], [2], speciallyfor teachingpurposes irrobotics.Of course,
it is expectedhat a collision detection isincluded in a simulation aswell [3], [4]. It prevents
collisionsbetween a robot modelndmodelsof otherobjects.By reportingan error of collision

in simulation, adamagethat could be made on areal robot performingthe sameaction asits

model is prevented But the simulationwith collision detection is notusableonly for students
learningaboutrobotics.Information obtainedfrom the simulationcanalso be used tocontol a

real robot. Acomputer modetepresents aeal robot in avirtual world, which is a precisecopy

of robot'ssurroundingsThe robotmay repeatmoves,which were previouslyrecognizedsafeby

simulatingthem on robot's modesndof coursethe robotshould nofperformanoperation|f its

modelcollidedwith somevirtual objectduring simulation.

The previously mentioned papers [1], [2] describecontrolling a physical robot with a
computervia internet. In this paper,we give a descriptionhow the collision detection is
performed in simulation. This simulation is programmedwith VRML and Java.The Virtual
reality modellinglanguage (VRML) is amulti platform file interchange formator building 3D
graphicalmodels.The VRML standarddefinessemanticfound in 3D modelling applications
e.g. construction of geometric primitives, hierarchical transformations, lighting sources,
viewpoints,animation,etc. Java isalso a platformindependenprogramminglanguage which
can interact with VRML scenes. In VRML, we create a virtual robot and the world that
surroundghis robot,andthe robotmovement igontrolledwith Javacomponents.

The paper isorganisednto six chapters After this introduction, a problemrefered in the
continuation is briefly discussedand the main actions are listed. In the third chapter,
triangulationof particular VRML shapenodes is described.Namelly, our collision detection
operateswith trianglesonly, and therefore, morecompexshapeshave to be triangulatedfirst.
After this, two approaches taollision detection areexplained:the raw methodand the space
subdivision method. In the fifth chapter, mathematicalbackgroundof a triangle — triangle
intersection test,which presentsthe fundamentaloperationof the collision test, is observed.
Finally, our work is briefly highlightedonce more inthe conclusionandour future work in this
field is described.

2. Interaction between VRML and Java in computer simulations

For controlling areal robotby help of a computer, itsuffices tocalculatewhetherthe robot
collides with some other object, but really efficient simulation should use all abilities of
computergraphics tovisualize a modebf the robotandits virtual surroundingsWe have used a
possibilities offered by VRML to implement this task. The VRML is very suitable for
simulations in 3Denvironmentpecause aseronly has todescribethe geometryandthelighting
parametersf the virtual world, andall therest is dondy the VRML browser.Theuserneed not
think how to implementprojections renderingand navigation in avirtual world, while all these
tasks are provided by the browser already. Besidesthis, the VRML browsers aretypically
designed asadditionalcomponents to standarshternetbrowsers,and therefore, VRML brings
virtual worlds tointernet.

Themainbuilding element inthe VRML language icalled anode. Itunites asetof fields,
which can presentparametersf types known from other programminglanguagespor other
(nestednodes. In VRML,the geometry isdescribedvith so-calledshapenodes like aSohere or
a Cone. There aretwo possibilities.The first one is to use predefinedprimitive shapesThese
shapes arboxes,conescylindersandspheresywhich canberrepresentedy the Box, the Cone,
the Cylinder andthe Sphere nodes.Beside tothe primitive shapesthe IndexedFaceSet nodecan
be used torepresent a 3Dobject. By this node,the face geometry isdescribed Among all, the
IndexedFaceSet nodecontainsthe coord field, which specifiesthe coordinate®f pointsavailable
for building faceswithin the face set. A complex object can be representedby a group of

primitive types,or by a setof facesdescribedy the IndexedFaceSet node,or by acombination
of all thesenodes.

ft Internet Explorer
Favortes Toolz Help “ d= - »l i.t’-‘n.;ldress iJ Povezave »|E
JaintT+ Joint1- Joint2+ Jaint2- Joint 2+ Joint3-
Pitch+ Fitch- ¥ aw+ ¥ a- Foll+ Rall-
Gripleft+ Gripleft- | Gripright+ | Gripright-
&7 Done] |__iﬂ Intemet i

Figure 1. Arobotarmcreated in VRMLandcontroledwith Javabuttons

In Figure 1,anexampleof a virtual robot isshown.The virtual world is built from different
shapesBox, Cone, Sphere, Cylinder andIndexedFaceSet). A single shapeor moreshapesuild
objects. Interestingobjects presentingthe parts of the robot are named jointl, joint2, joint3,
pitch, yaw, roll and gripper. The static tableandtwo cylinderslying on it are also objects.At
first, we have togather ageometryof all shapes tdeable tobuild geometryof all objects.

Besidesnodesandfields, the third consistenpartof the VRML language arevents Events
bring dynamicsinto VRML world. We usethem to changecoordinatesof particular objects.
Actually, eachobject isnested, on®y one, in soealled Transform node,andthe valuesof fields
of thesenodes which represenparameter®f geometrictransformationsrptations,scallingand
translation), aremodified. A user can interactively modify these parametersby using Java
buttonsat the topof thewindow (see Figure 1). Ithis way, movemenbf the robot iscontrolled.
A partof the robotmay be movedonly if it would not collide someotherobject the table,two
cylinders onthe tableor other part of the robot) in its new position. The collision detection is
alsoimplemented in JavaThe shapes ar@xportedfrom VRML into the Javaapplicationfirst.
While the collision detection isperformed ortrianglesonly, the objectsbeingmovedhave tobe
triangulated then. After the triangulation, triangles are tested for intersections.If some
intersection igdeterminedthe applicationreportserror, otherwisetransformatiorparametersor
objects being moved are exportedback to VRML (they are routed to appropriatefields in
appopriateTransform nodes),and the VRML browser can visualize modified virtual world.
From Figure 1, icanbe noticedthatwe usethe browserCosmoPlayer.

Structureof thewhole systemandinteractionof all includedparts areshown in Figure 2.

Internet explorer

\ Navigation /
VRML ;

:> Geometry : :> Visualization
VRML browser

Java

= = = = mms e ==

‘VV

Triangulation

U

1
|
1
1
1
1
1
|
1
|
1 Geometric % ! ! Java buttons for
1 transformations o movement control
1
|
c
' ll ' 5.0
1 Triangle - triangle L 20
' intersection test =2
1 0o
! aOT
YES

>/ Error reports ! \

Figure 2: Thecollision detectionsystembased onnteractionof VRML and Java

3. Triangulation

Our collision detection, asnentionedbefore, isperformed ontrianglesonly. Therefore it is
necessary ttriangulateeveryshape Eachshape isdlecomposethto severatriangles. A triangle
is describedy threepoints {ertices): Triangle(R Py, P»).

Theprimitive shapes ar&iangulated irthefollowing way:

- A box consistsof six sides.Each side is a rectangledescribedwith four vertices. Two
triangles aregeneratedor eachside. Exampleof triangulationof a box is shown in Figure
3a.

- Acylinder cosistsof the curvedside and circular top and bottom side. Every part of a
cylinder is triangulated separately. The circular top and bottom are described with sixteen
triangles each. For better accuracy, a circle can be triangulated with more triangles, but the
collision test would become slower in this way. With less triangles, we gain on time, but lose
on accuracy. The curved side is trianglulated with thirty-two triangles. Therefore, the
cylinder is described with sixty-four triangles. A triangulated cylinder is shown in Figure 3b.

- Aconeis consists of a circular bottom and a curved side. The bottom is triangulated in the
same way as the circular top or bottom of a cylinder. The curved side of a cone is
triangulated with sixteen triangles. One vertex of a triangle is the top point of the cone, and
the other two vertices are situated on the circle that represents the bottom. The whole cone
surface therefore consists of thirty-two triangles. An example is given in Figure 3c.

- Ona sphere the grid of meridiansand parallels iscreatedfirst. Here, it is also possible to
changethe accuracy of triangulation. Usually, we use sixteen meridians and eight parallels.
At the top and at the bottom of the sphere, we obtain sixteen spherical triangles on each side,
and they are appoximated by planar triangles. Therefore, each of these two regions is
triangulated in a similar way as the curved side of a cone. The region between two
neighbouring parallels consists of sixteen curved rectangles. Each of them is approximated
by a planar rectangle, and then divided into two triangles. The operation is similar to
triangulation of the curved face of a cylinder, but note that the top and the bottom side of the
region between the neighbouring parallels are not of the same size. The number of obtained
triangles on a sphere is two hundred and eighty-eight, if the default accuracy is used. An
example of a triangulated spherestsown in Figure 3d.

d)
Figure 3 : Trianglulationof a) Box, b) Cylinder,c) Cone, d)Sphere

Non-primitive shapesepresentedy IndexedFaceSetretriangulated inthe following way.
Whenbuilding shapeswith this node, itmustbe consideredirst whetherthe shape isconvexor
concaveAll theshapesnentionedbefore areconvex.At the curentlevel of implementationpur
application also allows only objects with all the faces described by the IndexedFaceSet node
being convex. Typically, the coord field includes the Coordinate node. The coordindex field
specifies a list of the coordinate indices refering to the points describing a single face or more

faces. The points are specified in the coord field. The convex field is TRUE or FALSE indicating
whether all the faces in the face set are convex. The IndexedFaceSet node has also some other
fields, but they are not so important for representing geometry. More imformation on VRML
nodes and the structure of VRML files can be found in the book [6].

From IndexedFaceSetye obtainseveralplanarpolygons.The polygonscanvary in number
of vertices.Eachpolygonmustbetriangulated From apolygonwith n vertices {R, Py, P»,..., P,
Pi+1,..., Pa}, we obtainn-2 trianglessharingcommon topvertex: (R, Pi, P2), ..., (Po, P, Pis1), ...,
(Po, Pn-1, Pn). In figure 4, an exampleof a pentagon iggiven. After triangulation,we obtainthree
triangles.

Pq

P

Pe

Pi
Figure 4: Triangulationof a pentagon

With thesenodes Box, Cone,Cylinder, Sphereand IndexedFaceSetyye candescribeany
robot in space Later, morecomplexconcavefaceswill alsobe available insimulation,but for
simpleusefor educationapurposeshe describedshapes arsufficient.

Everyobject isdescribedwith a list of triangles.Thereforeevery trianglehasanid, to tell
us towhich objectthe trianglebelongs. Tcevery triangle, a 4x4natrix belongsalso.This matrix
describeghe positionof the triangle inspaceWhentransformingtranslating scalingor rotating
anobject — a trianglehat presentghe object,we changethe values inthis matrix, notthe vertex
coordinates of triangle. Real position of the triangle in space is then obtained by multipling all
the vertices of the triangle by the matrix.

Every object — each triangle that represents the object, also has a tag, which describes,
whether the object is static or dynamic. If the triangle has a static tag, it means that it cannot be
moved. For example, the table in Figure 1 is a static object. Dynamic triangles can be moved.

4. Collision detection

Each triangle in our virtual world has itewn id, which identifiesthe objectthatthe triangle
is apartof. A triangle isalso equipped with the matrix, which describes its position in the space.
When some objects are being moved, the matrices of all triangles that represent these objects
must be corrected. Collision detection is then performed on these triangles. Two triangles need
not be tested if :

- they belong to the same object. We suppose that shapes of all objects remain unchanged all
the time. While none of the parts of the robot does not intersect itself at the beginning, this
cannot even happen later.

- they arestatic.If two staticobjects do nointersectat the beginingof simulation,there is no
need to test pair of static triangles later in simulation.

Therefore, the triangle-triangle intersection test is made only when we compare two dynamic
triangles or a static and a dynamic triangle. Before calling a routine for triangle-triangle
intersection test, all triangles must be described with points at correct positions. All three points
of both triangles must be multiplied with thieansformatiormatrix of the corresponding triangle.

In the next two subsections, we describe two methods for collision detection. They differ
significantly in number of triangles that have to be tested. First, the raw method is described.
This method is slow and it is not suitable for a real time simulation. The second method is based
on space subdivision. It is expected to be faster than the raw method fotmaor80 %.

4.1 Raw method

This is the simplest method for testing collision detection. Each triangle is tested for
intersection with all the others triangles in space. When testing a pair of triangles, both triangles
must present parts of two different objects. There are two possibilities when to stop the
intersection test :

- stop when two triangles intersect. We arenly interested inthe answerwhetherany object
collide with any other object. After we have found out that two objects, to which the two
intersecting triangles bellong, collide, there is no need to testwhether any other objects
collide.

- stop after all triangles have been tested for collision. Here, we are interested in obtaining the
list of all objects that collide (to draw them with the different color or modify the movement
parameters to avoid collisions). During processing, the list of collided objects is made. When
choosing two triangles for the intersection test, they shoupesentpartsof objects,which
are not inthe list.

In robot simulation, it is usually expected that the object collision rarely appears. Every user
avoids these situations. The most collision process time is needed when there are no collided
objects in the space. For this situation, the O) time complexity is obtained, wheren is the
number of triangles in the space. Actuallghe numberof intersectiontests is a bitlower while
we do not test pairs of triangles gelonging to the same object, but it is in general sfill O(

If we have alot of triangles inthe spacetime spentfor testing collisions is very long. For
example, if there are two thousand triangles, the triangle-triangle intersection is made up to two
millions times (probably less, while we do not test triangles of the same object). The robot in
Figure 1 is described with approximately 1500 triangles, and requires about a million of
repetitions of the intersection test. Beside to this, the intersection test is not a simple operation.
For faster and real time simulations, some acceleratitathnique isrecommended. Irthe next
subsectionwe propose onef them — the space subdivision method.

4.2 Space subdivision method

Here,we employ a 3Dgeneralizatiorof the acceleratiortechniquewhich is widely used in
applicationsof computationalgeometry,especially in GIS, wherewe have to deal with large

amountsof geometricdata. We divide the spaceinto subspacesisually namedcells and then
determinefor eachgeometric element (a triangle inour case)the cells that at least partially
containthe object. After this, it suffices to testfor intersectionnly the elementselonging to
the samesell.

It is important todivide the spaceefficiently. It is recommendabléhat the cells aresimple
shapes toacceleratehe containment testwhetheran elementbelongs to the cell. The most
naturalway is to userectangles in 2D,and cubes in 3D space, both with the sides parallel to
coordinate axes. Beside to this, it is desiredthat a particular cell does not contain to many
geometric elements. Note that a particular element can spread over more adjacent cells. We use a
heuristics to determine size of the cells. We use an average length of all triangles in all three
coordinate directions. Dimensions of a cell #ren calculated a®llows.

n-1

g(mggf(&,j)— min(x,;))

dim, ==
n
n-1 .
2 (maxy) - minty,)
d|my = -
n-1 .
dim i=0 (mﬁg]((Zi’j) - Ell.g](zi'i))
| , = =

n

It is expectedhat aparticular trianglespread®ver a small number of cells, and that each cell
contains a small number of triangles. Consecutively, the number of repetitions of the triangle-
triangle intersection test is also small. The time complexity for this methoddsr€)(wherea is
the number of cells, ananis the avarage number of triangles in a particual cell. The valumof
is always much smaller than the number oftalingles inthe space ih << n).

The spacesubdivision is performed only once at the begining of the simulation. The space
has to be limited in a way to assure that none of the objects would fall out of it later after
performing geometric transformations on objects. This seems impossible, but we should not
forget that we usually know the real-worshvironmenbf the robotbeingsimulated the robot is
placed in the room, for example).

Each cell has a list of triangles that are at least partially contained in the cell. If the
transformation is performed on an object, it must be performed on all triangles that form this
object. Such triangle must then be removed from all cells containing it before the transformation,
and inserted in the triangle lists of cells containing the triangle after the triangulation. After this,
a triangle-triangle intersection test for all pairs of triangles in particular cells is performed. To
increase efficiency, any two triangles of the same object and any two statitriangles are not
beingtested.

This method is in general much faster than the raw method. If we have two thousand
triangles, and assume that we divide the space into one hundred twenty-five cells (five
subdivisions in each coordinate direction), wabtain sixteentrianglesper cell in average.The
numberof triangle-triangle intersection tests will then be about thirty thousand (152 * fpor
even less. This number is much smaller than two millions obtained with raw method.

In Figure 5, an exampleof spacesubdivision isshown.We use a 2D example,while it is
mucheasier tadraw it, but the situation in 3Dspace isanalogousWe havefour trianglesA, B, C
andD belonging tofour differentobjects.A lies inthecells [0, 0], [0, 1], [1, O], [1, 1], [2, O]and
[2, 1], wherethe first number in the coordinatepair representghe position of a cell in x-
direction,andthesecond one iy-direction.B is placed inthecells [2, 0], [2, 1], [3, 0], [3, 1]and
[4, 1]. C spreadoverthecells [0, 1], [0, 2], [1, 1], [1, 2] and [1, 3],andD is positionedinto the
cells [2, 3], [3, 2], [3, 3], [3, 4], [4, 3]and [4, 4].We only have to testhe pair [A, C], which both
occupythecells [0, 1] and [1, 1],andthe pair [A, B], while boththetriangles arepartially in the
cell [2, 1]. With thefirst pair, an intersection isdeterminedand with the second one, it is not.
NotethatthetrianglesA andC need nobetested inthecell [1, 1] once moreaftertheyhadbeen
tested inthecell [0, 1] already.

° Lk\ I

1 (>4§§ 1
N C

N A

D

.

4

>

: <

\

Figure 5: An exampleof spacesubdivisionfrom 2D space

5. Triangle-triangle intersection

No matterwhetherwe usethe raw methodor the spacesubdivisionmethodfor the collision
detection the triangle-trianglantersection test igperformed inthe sameway. This is the basic
operationof our collision detectionalgorithmandits is executedeally often, so it isexpected to
befastenoughThedescribed test ibased orfasteliminationof triangleswhich do notintersect.

Threeverticesof eachof the trianglesdefine a plane in 3D space.Regardingthe mutual
positionof two trianglesandthe planesl1; andl1, definedbethesetwo triangles threedifferent
situations argossible.

a) Both trianglesdefine the same planel{l; = My). The trianglesintersectif at least apair of
their edges &n edgeof thefirst andan edgeof the second trianglejntersector if one of the
triangles iscontained iranother one. Irthis last step, isuffices to test ainglevertexof each
triangle.The testcanbereleased asoon aghepositive answer iobtained. Irntheworstcase
whenthe triangles do notintersect.the algorithm has toperformsix edgeedgeintersection
testsandtwo point-in-trianglecontainmentests.While both mentionedests areof the same
complexity, it isbetter tobuild the test orthefollowing statementTwo triangles inthe plane
intersectf atleast onepoint of any of thesetwo triangleslies inside another triangleHere,
we have toperform*“only” six operations in the worst case.

b) All threeverticesof oneof thetriangleslie on the samesideof the planedefinedby another
triangle.Thetriangles do nointersectfor sure.

c) The verticesof one of the triangleslie on different sidesof the plane defined by another
triangle. Theintersection linedbetweerthe planes1; andrl; is calculatedirst. After this, the
intersectionsdbetweenthis line and both triangles arecalculated. Anintersectionbetween a
line and a triangledr anyotherconvexpolygon) isalwaysconnected. ltanbe apoint, a line
segmentor empty. Thesetwo intersections (letus say line segments in general) ar¢hen
testedfor theintersectionlf theyintersectthetrianglesintersect asvell.

6. Conclusions

The papeiindroduces the collision detection with space subdivision that can be performed in
simulations. The implementation is based on interaction between the VRML and the Java part.
VRML is employed for geometry representation and visualisation, and the Java application
provides the collision detection and movement control by Java buttons. Objects are triangulated
first. When a part of the robot being simulated is tried to be moved, new positions of this part i.e.
all the triangles forming it are calculated by performing geometric transformations. After this,
the transformed triangles are tested for intersections. The movement is confirm if no
intersections are detected, otherwise the collision detection is reported. The number of triangles
is typically large and testing all the pairs would require a lot of time. The space subdivision is
used to accelerate the algorithm by reducing the number of pairs that have to be tested. The space
is subdivided into cells, and only the pairs of triangles, which belong to two different object and
at least partially lie in the same cell, have to be tested. Experiments have proved that this method
is generally faster than the raw method for approximately 80%.

The described simulation with collision detection is intended to be a part of the bigger project
for controlling a real robot via internet. The simulation part will be generalized to handle objects
with concave sides as well. Besides this, the whole project will berganised as a client-server
application. Users will address the server, and this will communicate to the robot.

Acknowledgements

| would like to thank to Dr.Riko Safari

ERROR: rangecheck
OFFENDI NG COMVAND: . pdf show

STACK:

{--show-- }
(-)

]
(-)

