
Virtual Art Gallery

Stanislav Hrk
hrk@decef.elf.stuba.sk

Department of Computer Science and Engineering
Faculty of Electrical Engineering and Information Technology

Bratislava / Slovak Republic

Abstract

Introduction of the third dimension into the distributed environment of the Internet has opened
numerous new applications in various fields of human interest. The particularly interesting
application is in the field of fine arts, where it provides exciting new possibilities to present the
artwork to broad audience.

This paper provides an overview of techniques and one approach to development of interactive
3D galleries accessible from the web. It includes presentation of an application for designing virtual
galleries and their presentation on the WWW based on the VRML (virtual reality modeling
language).

Keywords: virtual reality, virtual gallery, VRML, WWW, geometry-based rendering, image-
based rendering, picture panoramas.

1. Introduction

The problem of designing virtual galleries is relatively new area in broad scope of software
development. It has become topical problem in relation to dynamical development of computer
multimedia capabilities and mainly with expansion of the Internet.

The Internet as a global communication medium offers unique opportunity for addressing
considerably broader audience than classical galleries, which are limited not only by capacity, but
also by temporal and spatial constraints of real world. Furthermore, Internet presentations can take
various forms, shaped by author’s inspiration during the creation process and specific means
provided by technologies used.

In general, there are a few mayor approaches to creation of virtual galleries. Chronologically the
first and still the most widespread are two-dimensional galleries. This kind of galleries are usually
authored in HTML, with optional functionality enhancements like database connectivity, search
capabilities etc provided by some scripting language or Java. The main problem of these galleries
lies in their two-dimensional nature. It is the fact, that subjective feeling that they evoke in a
spectator is very often closer to reviewing a catalogue of given artwork, than visiting a real gallery.

A step forward to developing more realistic virtual galleries was introduction of the 3D web
contents, which can be used to immerse the spectator into three-dimensional ambient of the gallery
and significantly enrich overall experience of visiting such gallery. Modelling an interesting 3D
scene is, however, far more complex task than creating a simple 2D presentation, which is perhaps
the main reason why 3D web contents still is not as popular as 2D.



Traditional approach to three-dimensional computer graphics is based on synthesizing images
from geometric models. Several 3D modelling languages were developed for use over the Internet.
Perhaps the best known is VRML, a language for modelling 3D interactive worlds and objects on
the WWW. Alternatives to VRML are languages developed by Flatland (3DML) [9] or Superscape
(SVR) [10]. Superscape has recently come up with a new technology for 3D modelling for the
WWW based on a subdivision of surfaces, which produces high quality models that are
substantially smaller in size than models generated by other technologies. Specific information is
not available as it is kept as a company secret.

Lately, an alternative modeling paradigm was introduced, known as Image-based rendering.
Image-based rendering (IBR) describes a set of techniques that allow three-dimensional graphical
interaction with objects and scenes whose original specification began as images or photographs. In
an IBR pipeline, processing is applied to a set of input photographs creating an intermediate data
structure. Later, this data structure is used to create new images of the scene or object [6].

One of image-base techniques quite popular nowadays uses single panoramic image for scene
description. Panoramic image is mapped onto the inside of some geometric primitive, like a cube,
cylinder or a sphere. The viewer is placed in a centre of chosen shape, and is allowed to modify the
field of view and rotate around that single point. Main disadvantage of this technique is that the
viewer is fixed to a single point. Moving to another point of view requires a new panoramic picture
taken at desired position. At the present, there are commercial systems available that use this
technique, like Apple’s QuickTime VR [11], IPIX [12] or iMove [13], and also some free systems
like PTViewer [14]. These systems enhance panoramic worlds with hotspots that provide links to
other files or panoramas, embedded images, movie textures or object movies. Some galleries using
picture panoramas already exist, for example at the official website of the Louvre Museum [15].

Another one of image-based rendering methods is morphing. Image morphing is used to provide
smooth transition between two images. An image-based technique called plenoptic modelling is
described in [5]. This technique uses both panoramic images and morphing to render a view of a
scene from arbitrary point. The problem with this system is that in order to synthesise a usable
interpolation between two panoramic images they must be relatively close. To enable free
movement in a scene, a large number of panoramic images need to be taken, resulting in huge
memory requirements. This makes this approach hardly usable on the WWW at this time, but in
future some system like this might be deployed for the web.

The techniques mentioned above, both geometry-based and image-based, can be used as a base
approach for creation of virtual galleries. In further text we explore one approach using VRML as
the language for describing the virtual gallery and objects within. VRML was chosen because it
provides flexible interface, it is well documented and commonly known.

2. Acquiring the artwork

One of interesting problems is acquiring some sort of digital representation of the artwork that is to
be exhibited. Image-based representation has its advantages here over geometry-based, because
recovering the models is reduced to taking 2D images, even for three-dimensional objects
represented by object movies.

Capturing the geometrical representation of a 3D object is far more complex. One way is to
model them by hand, but that is very time-consuming process and can hardly reach the complexity
of a real object. Other possibility is to use one of object reconstruction techniques developed in the
field of computer vision. A system for reconstruction of 3D object from pictures taken from
multiple views developed at our faculty is described in [8]. This system provides output in VRML
format. Quality of acquired objects is acceptable for use on the WWW. Some of models generated
by this system were used in sample galleries (see figure 6).



3. Virtual Gallery Editor

Virtual Gallery Editor is a tool for development of three-dimensional virtual galleries. It was
designed to simplify, organize and speed up the process of creating virtual galleries, setting up
exhibitions, and their presentation in a form publishable on the World Wide Web. Other possible
use is to build a prototype of a real exhibition before it is deployed. This tool brings new quality:
distant, interactive planning of the exhibition layout.

3.1 Motivation
One could argue that it is possible to use existing powerful generic 3D modelling software to
develop more realistic galleries than with a tool like VGE. On the other hand, generic software is
built for use in broad range of applications, which brings substantial functionality overhead when
focusing on a single application, like virtual galleries. This reflects on high price of generic
software, a lot of time and effort required for learning to use it to produce quality output. This can
prove to be very discouraging for most users.

The goal of this project is to provide lightweight area-specific tool that offers features that
generic software does not focus to. The main advantages of VGE over generic modelling software
products are:

 Fast and intuitive design of the gallery layout
 Structuring of presented artwork and related information into logical entities – exhibitions
 Reuse of galleries for multiple exhibitions. Exhibited artwork can be changed with a simple

push of a button
 Automated generation of HTML pages about particular exhibited artwork (painting) from

information provided in the exhibition
 Exporting the gallery data in an internet-ready form

3.2 Decomposing the gallery
In order to start building a gallery, a set basic objects that are going to be used must be identified,
together with relationships among them. This was done by process of abstraction from objects in
real galleries, with considerations to specific requirements put before virtual galleries and possibility
of modeling that objects using resources provided by VRML. At the end, the structure of data model
shown on figure 1 was adopted.

Figure 1: Data model



Key objects in the gallery are, naturally, the works of art. At the time, only exhibitions of 2D
pieces of art like paintings, prints and photographs are fully supported, but there are means for
presenting other types of artwork, as for instance sculptures, audio or video records, that will be
discussed later. To simplify the data model, all 2D pieces of art in VGE are referred as paintings. In
case of paintings, there are two data entities related to them: paintings and painting instances. The
paintings entity contains various information about paintings that are part of current exhibition.
What information is stored can be seen from the data model. The painting instances entity stores
data about specific instance of that painting in the gallery. It is possible that a single painting occurs
more than once in the gallery. The painting instances entity is linked to surfaces entity, which links a
painting instance to the surface of the wall where it is hanged. Linking painting instance to a wall
surface rather than specifying absolute co-ordinates of the painting was necessary to ensure that
when moving a wall, painting instances attached to it would move correspondingly.

Other key objects are the walls, which shape the gallery and provide surfaces for hanging
pictures. Walls are represented by entity of the same name. As seen from the data model, walls can
be textured or have specified colour. The wall provides two surfaces for hanging paintings, which
are represented by the surfaces entity. Surfaces is an intermediate entity between painting instances
and the walls entity, and have no own attributes.

Viewpoints are used set a pre-defined view of the gallery. A set of viewpoints can be used to
create a tour of the gallery. Currently, only one static tour can be implemented this way, but it is
planned to implement a mechanism to allow a visitor to interactively create own gallery excursions
by selecting from predefined viewpoints. This can be done before entering gallery, or dynamically
during the tour using VRML EAI [3]. Viewpoints are represented by the viewpoints entity, which
has attributes like position, orientation and description.

Placing lights in a gallery is more or less self-explanatory. Choosing the right illumination can
greatly affect the overall appearance of a gallery.

As previously mentioned, it is also possible to exhibit 3D artefacts using VGE. This is using
objects represented by data entity called inline objects. These objects provide an interface for
inserting arbitrary VRML contents into the gallery. This way we can insert various static or kinetic
sculptures, or even complete installations (complex scenes with 2D and 3D artefacts that cover
entire exhibition hall).

3.3 Setting up an exhibition
When setting up an exhibition, the author chooses the artwork that is to be presented and enlists it
into exhibition. Currently, the only type of artwork supported by exhibitions in VGE is 2D artwork.

There are two ways of setting up an exhibition in VGE. The one way to do it is to manually input
data into application. This is done via interface called exhibition editor implemented as a dialog
box. It allows the author to provide additional information about the piece of art presented (refer to
the paintings entity in figure 1). The only required information is URL for the 2D image of the piece
of art, but it is recommended to fill all fields as information provided here can be used to
automatically generate HTML page for that piece of art.

The other way is to load text file containing description of exhibited artwork in predefined
format. It can be written manually, or exported from some gallery created in VGE. This allows data
entered for one exhibition to be reused in another. Other scenario of using this feature is in case,
when authors send their work, for instance by e-mail, to curator of the gallery. Along with image
files, a description file can be included to help including paintings into the gallery.



3.4 Editing the floor plan
Basic view of the gallery is through its floor plan. VGE provides a 2D interface to edit the floor
plan, as can be seen from figure 2. This approach was chosen because it provides clear overview
and allows precise positioning of objects in the gallery. This view implements placing, deleting,
moving, resizing and setting properties specific to each type of objects. Setting properties is
implemented through object-specific dialog boxes (Wall Properties box in figure 2) invoked by
clicking the right button on selected object.

Figure 2: The floor plan

3.5 Placing the exhibited artwork
Placing paintings (in general, 2D pieces of art) in VGE is somewhat different than placing three-
dimensional artwork. Since paintings are bound to walls, in order to place a painting there must be
at least one wall present in the gallery. To modify the layout of selected wall, it is required to
double-click on the wall, which invokes two new windows. The first represents the layout of that
wall’s surfaces, along with paintings placed on selected surface. The second window contains the
list of paintings placed on selected surface and some additional information and options related to



selected painting instance. This window also enables to switch between surfaces of the wall by
clicking on the tabs at the top of the window. Figure 3 illustrates these windows.

Figure 3: Wall layout view

At the wall layout window, user can add, delete, resize or move painting instances. When adding
a painting instance, a dialog appears which allows choosing from paintings entered into exhibition,
and the manner in which it is to be placed on the wall.

Placing sculptures is similar to placing any other inline object into gallery. Note that because of
different orientation and size of VRML objects, it is sometimes necessary to rotate and scale the
object to fit the gallery, which can be done at inline object’s properties dialog.

3.6 The output
When finished designing the gallery, its data can be saved along with the exhibition data in an
internal format, or it can be exported in VRML. When exporting to VRML, a directory structure is
created containing files related to the gallery. Figure 4 illustrates the directory structure.



Figure 4: Directory structure of exported gallery

At the top, there is a single uncompressed VRML file entitled gallery_name.wrl file (where
gallery_name is the name under which is the gallery exported) that describes the gallery itself, and a
directory gallery_name_files that contains files related to the gallery.

The textures subdirectory contains textures used for walls. The paintings subdirectory contains
images of paintings and possibly generated HTML pages with information about paintings for those
paintings, for which it was selected. Not all paintings in the exhibition are copied into this
subdirectory, but only those used (exhibited) in the gallery. The objects subdirectory contains
VRML files of inline objects used in the gallery. VRML files linked to the gallery using inline
objects are not parsed for links to other resources. This means that other related files, as for instance
textures, sounds, video clips or other objects will not be copied and have to be copied to this
subdirectory manually.

Only the files whose URL points to local disks are copied and their URL are modified to
correspond to directory structure of the gallery. URL of files that cannot be found on a local disk are
left intact (because it is presumed that it points somewhere on the WWW).

3.7 Implementation and testing
The Virtual Gallery Editor was implemented in C++ using MS Visual C++ 6.0 and MFC library on
MS Windows operating system. This product was developed using object-oriented principles. A
separate class that encapsulates the data and provides external interface for manipulation with object
was created for each type of objects in the gallery.

Gallery data exported from VGE is in standard VRML 2.0 utf8 format. It was tested on the MS
Windows platform, using combinations of Internet Explorer 5.5 and Netscape Navigator 4.71 web
browsers with Cosmo Player 2.1.1, Cortona VRML Client 2.0 and Blaxxun Contact 4.4 VRML
browsers. The results were varying from one combination to another, mainly because of differences
in implementations of VRML browsers. Testing was performed on a Pentium II 350 MHz machine
equipped with 3D Labs Permedia 2 graphic card with 8 MB of RAM, with a combination of Internet
Explorer and Blaxxun Contact. Sample gallery data included approximately 1600 polygons and 25
textured boxes. Data size was 630 KB, from which textures occupied about 450 KB. Using
Direct3D driver interactive framerates were achieved without difficulty on all resolutions up to
1280x1024 / 16 bpp. Higher resolutions were not available with only 8MB of graphic RAM.



3.8 Examples

Figure 5: A shot from exhibition of Kovacica Naive Art

Figure 6: A shot of the statuette of Venus displayed on a stand in a virtual gallery



4. Conclusions and future work

Three-dimensional virtual galleries are interesting new application of virtual reality on the Internet.
Some of these galleries can be found on the WWW, but mostly this potential is left unused. One
reason for this can be the risk exhibitor undertakes that comes from diversity of tools and modeling
languages for 3D contents on the WWW. Many of these languages are developed by companies in
ambition to force it as a standard. This did not happen yet and the situation with 3D contents on the
web still remains uncertain, as new technologies and languages are developed constantly.

This paper described one approach for construction and presentation of virtual galleries using
VRML. The Virtual Gallery Editor tool is functional and can be used to produce interesting galleries
deployable on the WWW. One possible drawback can be the size of complex galleries, which arises
from the need of storing large amount of data presented at the same time. Reducing the quality of
presented data, as for instance the resolution of images or video, in cases where the highest quality
is not required can eliminate this drawback. In time, with progress in technology this problem will
be gradually eliminated.

Future evolution of this project might go in two directions. The first is to enhance the capabilities
of existing Virtual Gallery Editor. The list of possible improvements includes implementation of
database connectivity, improving the user interface, adding exhibition support for other types of 2D
and 3D artwork like sculptures, video and audio records, implementation of more basic object types
directly in the gallery editor, opening the galleries for multi-user presence, ...

Other possible direction in which this project might evolve is implementation of a tool for
authoring virtual galleries and exhibitions using picture panoramas, and a viewer for this kind of
galleries. This solution has advantages over 3D because it provides very realistic views of the
gallery interior captured from the real world, with option of adding additional contents to the scene.
The gallery can include paintings, video, sounds, or sculptures using object movies, or even a virtual
humanoid guide through the gallery that responds to user actions.

Possibilities remain open.

5. Acknowledgements

At this point I would like to express my gratitude to associate professor Martin Sperka for his
guidance through this project. I would also like to thank Tomas Gerhat for his initial work on virtual
galleries, and Dioniz Vadkerty for VRML reconstruction of the statuette of Venus used in one of the
examples.

6. References

[1] The Virtual Reality Modeling Language: International Standard ISO/IEC 14772-1:1997, ISO,
14.10.1999.

http://www.vrml.org/Specifications/VRML97/index.html

[2] The Virtual Reality Modeling Language: International Standard ISO/IEC 14772:200x, ISO,
4.4.2000.

http://www.web3D.org/TaskGroups/x3d/specification

[3] VRML External Authoring Interface Specification, 15.3.2001.

http://www.vrml.org/WorkingGroups/vrml-eai/Specification/

 [4] Lipkin, D.: VRML Informative Annex: Recommended Practices for SQL Database Access,

http://www.vrml.org/Specifications/VRML97/index.html
http://www.web3d.org/TaskGroups/x3d/specification


Oracle Corporation, 18.12.1998.

http://www.web3d.org/Recommended/vrml-sql/

[5] McMillan, L.: An Image-Based Approach to Three-Dimensional Computer Graphics, Chapel
Hill, 1997.

[6] McMillan, L., Gortler, S.: Image-Based Rendering: A New Interface Between Computer
Vision and Computer Graphics, SIGGRAPH Computer Graphics Newsletter, Vol.33 No.4,
November 1999

http://www.siggraph.org/publications/newsletter//v33n4/contributions/mcmillan.html

[7] Gerhat, T.: Model of a virtual gallery in 3D, Final Project, Faculty of Electrical Engineering
and Information Technology, Bratislava, 1999.

[8] Vadkerty, D.: Reconstruction of 3D Objects From Multiple Views, Master Thesis, Faculty of
Electrical Engineering and Information Technology, Bratislava, 2000.

[9] Flatland Online, Inc., 10.3.2001.

http://www.flatland.com/index.html

[10] Superscape, 10.3.2001.

http://www.superscape.com

[11] Apple QuickTime, 15.3.2001.

http://www.apple.com/quicktime

[12] IPIX, 15.3.2001.

http://www.ipix.com

[13] iMove, 15.3.2001.

http://www.smoothmove.com

[14] PTViewer, 15.3.2001.

http://www.fh-furtwangen.de/~dersch

[15] The Official Website of the Louvre Museum, 15.3.2001.

http://www.louvre.fr

http://www.siggraph.org/publications/newsletter//v33n4/contributions/mcmillan.html
http://www.flatland.com/index.html
http://www.superscape.com/
http://www.apple.com/quicktime
http://www.ipix.com/
http://www.smoothmove.com/
http://www.fh-furtwangen.de/~dersch
http://www.louvre.fr/

	Introduction
	Acquiring the artwork
	Virtual Gallery Editor
	Motivation
	Decomposing the gallery
	Setting up an exhibition
	Editing the floor plan
	Placing the exhibited artwork
	The output
	Implementation and testing
	Examples

	Conclusions and future work
	Acknowledgements
	References

