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Abstract 

This paper deals with combination of shooting and gathering stochastic radiosity methods. The basic 
two-pass methods are reviewed and other new methods are proposed. The fundamental motivation 
for this paper is to develop an iterative two-pass stochastic radiosity that provides the progressive 
refinement feature of both types of radiosity algorithms. We want to give the user a new, better, 
solution of the radiosity problem that improves incrementally over the previous one. 

Keywords: shooting radiosity, gathering radiosity, two-pass methods, progressive refinement, 
Monte Carlo. 

1. Introduction 

Digital image synthesis is very wide area in computer graphics. Trying to provide images of virtual 
environments we have many choices how to achieve the goal. One way is a photo realistic image 
synthesis. In this type of image synthesis we want to create the picture that looks like a photograph 
of a real scene as much as possible. One of the main problems in this field is to simulate the realistic 
lighting. Without the light there is no image and with non-realistic lighting models we can even 
confuse the user. Therefore for realistic image synthesis we have to simulate the light very 
accurately. 
The radiosity method belongs to a family of global illumination algorithms. It is a simplified version 
of the rendering equation proposed by Kajiya in [Kaji86]. It makes this equation been trackable by 
reducing it to a simpler form using some assumptions about the input scene. Very good book on 
radiosity is [Cohe93] where you can find all the necessary background information on radiosity.  
We can divide the radiosity methods into two groups. Deterministic methods are solving systems of 
linear equations to compute the illumination in the scene while stochastic radiosity methods are based 
on the Monte Carlo integration. This paper deals with possible combinations of different stochastic 
algorithms to obtain better results for the radiosity. The paper is organized in the following form. 
First we review several stochastic radiosity algorithms. The second section deals with progressive 
refinement methods and two-pass methods that are very useful and effective. The third section 
proposes new possibilities of combination of different stochastic radiosity methods. Several 
experiments and their results are presented. Finally we make some conclusions about what does our 
approach bring to users. 
 

 



1.1 Shooting versus gathering approach 

Shooting and gathering radiosity are two opposite ways of solving the system of linear equations. 
Gathering radiosity can be found in classic Gauss-Seidel iteration methods for solving systems of 
linear equations. It means that the illumination of a patch is gathered onto the patch from the 
surrounding environment. The system is solved (has converged to a solution) when the difference 
between two iterations (gathers) is lower then some predefined threshold. 
On the other hand shooting approach, usually called progressive refinement radiosity, tries to 
simulate the light transport from the light sources. It introduces new value for each patch, the unshot 
radiosity. It starts with source patches having their unshot radiosity equal to their emission. A patch 
is chosen and its unshot radiosity is distributed into scene. This reduces the unshot radiosity of 
source patch to zero but increases the unshot radiosity of hit patches. When the reflection is lower 
then 1.0 for each patch, the overall unshot radiosity is reduced with more shootings. Shooting has 
one nice feature. After only few steps the primary illumination can be computed thus giving us good 
approximation of the final solution. Shooting radiosity is finished, when the total unshot radiosity 
over all patches is lower then some predefined value. This kind of solution is actually Southwell 
iteration for solving systems of linear equations. Although it is not efficient for systems common in 
other applications, in radiosity it is a good choice. 

1.2 Stochastic radiosity (Monte Carlo radiosity) 

Stochastic radiosity is based on Monte Carlo integration. The light transport in stochastic radiosity is 
done by the means of rays. Rays are abstraction of photons. The basic advantage of Monte Carlo 
radiosity methods over deterministic ones is the there are no form-factors computed explicitly. This 
saves a lot of computations, because the form-factors need information about mutual visibility of 
patches that is extremely hard to compute. The role of form-factors is replaced by the probability 
that a ray shot from a patch reaches the other patch. Thus the form-factors are only computed 
implicitly. In addition, in deterministic methods form-factors are computed between all patches, 
while in MC only between mutually visible patches. This is highly important especially in complex 
scenes. However this is at the expense of having solution with variance from a correct one. Every 
time we run the computation we get a different solution. There are either shooting or gathering 
Monte Carlo radiosity algorithms. In both cases rays are cast from patches to send/receive light 
energy. Because we assumed that surfaces are made of diffuse materials, their directional distribution 
is always cosine according to the angle between ray and normal of the surface at the ray origin.  

1.3 Shooting stochastic radiosity 

Shooting stochastic radiosity is based on shooting the unshot radiosity of patches into the scene and 
transferring the power to other patches. In the whole paper we will refer to an unshot radiosity as a 
part of the radiosity of the patch that wasn’t accounted into the solution yet. All the energy transport 
is based on power that is computed as radiosity of patch multiplied by its area. For a patch Pi with 
unshot radiosity dBi a number of rays is chosen and energy of each ray is computed as dBi*Ai/ni. 
Then ni random directions are chosen according to cosine distribution. For each direction we send 
one ray and find the nearest hit surface. We multiply the energy of that ray by reflectivity of hit patch 
and add its influence to the radiosity and unshot radiosity values of the patch. Then we set the unshot 
radiosity of the shooting patch to zero. We repeat this process until convergence, which is defined by 
a threshold value of overall unshot radiosity. 
Good idea about the shooting stochastic radiosity is to make each ray do the same amount of work 
thus decreasing the computation in situation were the contribution of source patch is too small. This 
was very well discussed in [Feda93]. Some additional advantages of this approach are also discussed 
in the progressive ray refinement radiosity chapter later on. 



1.4 Gathering stochastic radiosity 

Gathering stochastic radiosity uses different approach. Instead of a patch shooting its energy into the 
scene, it gathers its illumination from the scene. The whole process works in steps where in one step 
each patch gathers its new illumination value from the present values (temporary solution) and uses 
these values as input for next step. The convergence is defined as threshold value of difference 
between two consecutive steps. Again, for each patch we choose number of rays and we send them 
according to the cosine distribution into the space. The average value of radiosities of hit patches 
multiplied by the patch reflectance is the value of radiosity of the gathering patch for the next round. 
Typically for each patch we choose the same number of rays during the whole computation. 

1.5 Two pass methods 

Two-pass radiosity methods are designed to run in two consecutive steps. Typically the first step is a 
shooting radiosity followed by second step, gathering radiosity. Let’s have a look at reasons why 
such algorithm is useful. 
Shooting radiosity by sending rays from patches can miss many small destination patches. This kind 
of error is increasing with the scene complexity, when many patches are created. Therefore we need 
to use many more rays to get a good solution. However when a larger patch is between small, this 
one is highly over sampled and we waste computation time and can also create visible artifacts 
(bright spots). Gathering radiosity never misses any destination because it computes radiosity for 
each patch. On the other hand sampled directions used for gathering can miss an important light 
source. Especially when a small patch has high radiosity and thus has high importance on the 
illumination of the scene, the gathering can loose.  
Problem found in one of the radiosity algorithm is solved by the other. Therefore two-pass methods 
are being used. First the shooting is used to distribute the light from light sources into the scene. 
Although its results aren’t very good for human perception, it provides a good overall light 
distribution. With some precision it simulates the light interreflection in the scene. But the variance 
of the solution is high thus difference in the illumination between neighboring patches is also very 
high in early shooting solutions. To make it smoother we can use the gathering radiosity. We use the 
result of shooting as an input for the gathering step. This helps to solve the problem of missing 
patches. Radiosity of all patches is computed with the same number of rays for each patch so the 
overall accuracy of the solution depends only on the accuracy of the shooting solution and the 
number of rays used for gathering. When we gather from a complete shooting solution we still have 
the problem, especially in direct illumination, that we can miss some important patches. The quality 
of direct illumination is a well-known problem in all Monte Carlo algorithms. There is a possibility to 
divide the gathering into two parts, one for direct and one for indirect illumination only. For more 
details please refer to [Shir91]. 
The second step, the gathering, can be done in more ways then just on a per patch basis. For smooth 
illumination reconstruction at least a linear interpolation of vertex radiosity values is used. Vertex 
radiosity is normally extrapolated from patches as area weighted average. The gathering radiosity 
step gives us the possibility of gathering radiosity directly in the vertices and thus avoiding the need 
of extrapolating the radiosity values. This gathering solution stays in the object space, as the per-
patch gathering does. Other possibility is to gather radiosity per pixel. A small virtual patch is found 
(typically only points are used) that can be seen through a pixel and radiosity is gathered for this 
virtual patch. This approach can solve many problems of all radiosity algorithms. We don’t need to 
deal with the discontinuity meshing; no smoothing of radiosity is needed. However it moves the 
solution from the objects space into image space. Because of this we will not use this type of 
gathering in this work. We will work with the per-patch gather exclusively. 



2. Progressive refinement approaches 

Because the radiosity values of patches computed by Monte Carlo methods behave like a random 
variable with only an expected value we never get the same solution twice on the same input scene. 
The difference of the solution from the correct one can be expressed via variance. The goal is to 
reduce the variance as much as possible. Having two complete solutions of radiosity we can combine 
them into one even better with lower variance. All we need is a good weighting [Sber95]. As Shirley 
in [Shir91a] presented, the variance of a single solution is dependent on the number of rays used (in 
the shooting the number depends on the energy each ray is carrying). The weighting in single pass 
radiosity can be determined from these values. 

2.1 Progressive ray refinement (PRR) radiosity 

In [Feda93] Feda et. al. presented a radiosity algorithm that incorporates the feature of refining 
complete radiosity solution. It shows how to refine a previous solution by adding more rays. The 
number of rays depends on the amount of energy each ray is carrying in each phase of calculation. 
The weighting is inversely proportional to the energy of single ray. This results in a following 
algorithm: 
 

 
Do a coarse shooting with relatively big energy carried by a 
single ray 
Until the quality is not satisfactory 

Reduce the energy carried by a single ray 
Compute a new solution of shooting radiosity 
Combine this solution with the one already provided 

according to the energies of rays and update the 
values 

 

Algorithm 1. Progressive ray refinement stochastic radiosity 

PRR radiosity is one of the first algorithms that can provide improvements to the radiosity solutions 
as the time progresses. This gives a good quality control to the user. This feature is the most 
important we will try to incorporate into the new algorithms presented in this paper 

2.2 Progressive refinement gathering radiosity 

This gathering radiosity algorithm is actually a two-pass method. Instead of using its previous 
solution as input to the next iteration step it uses a complete shooting radiosity as the input. 
The gathering starts with a coarse gather step with low number of rays per patch. It computes just 
one step of gathering from the provided solution and returns this as a complete solution. Notice that 
there are all the interreflections already counted in it, because the shooting computed them already. 
Thus we only need one gathering to have full solution of specified accuracy (depending on the 
number of rays used). When the user decides that it is not good enough s/he can start next gather 
with new number of rays and combine it with the previous one. Technically it is like adding more 
rays to the simulation thus increasing accuracy. The pseudocode is written in the Algorithm 2. 
 
 



 
Get a shooting radiosity solution. 
Do one gathering round with some number of rays per patch. 
Until the quality is good do the following 

Choose the new number of rays for next gather round. 
Gather radiosity from the initial shooting solution. 
Combine the new gathering solution with the previous 
one 

 

Algorithm 2. Progressive gathering stochastic radiosity 

Combination of two gathering rounds starting from the same shooting solution is straightforward. 
The weighting is proportional to the number of rays used for gathering radiosity of single patch in 
each step. With such gathering algorithm we have to take into account that using only few rays for 
gathering we can get much worse solution than the initial shooting gives us. One has to be very 
careful by setting the number of per-patch rays for gathering. Therefore progressive refinement is 
great option for quality control. 
The gathering radiosity has the same good refinement feature as the previous shooting radiosity 
algorithm. But there is a problem. First you have to compute at least some shooting radiosity to 
provide the light distribution in the scene. The gathering iteration steps are computed in equal time 
period, but the shooting step introduces some initial computation that lacks this feature. In the next 
chapter we will try to solve this problem.  

3. Iterated two-pass stochastic radiosity 

In this chapter we will introduce two new approaches to two-pass radiosity. The goal is to design a 
two-pass algorithm that can progressively refine its previous solutions. The reason is that the two-
pass radiosity solves some problems found in single pass radiosity algorithms. On the other hand it 
lacks the possibility of getting a coarse solution for preview and then refining it for higher quality 
without loosing the computation time spent on the first solution. This is the basic expectation we 
have on the algorithm. 
The first approximation has already been proposed. It is the progressive gathering radiosity. This is 
not exactly what we need, as it prohibits from enhancing the input shooting radiosity solution. 

3.1 Progressive two-pass radiosity 

This algorithm is very similar to the progressive refinement gathering radiosity. The only and basic 
difference is that in the previous version, the shooting radiosity solution was computed at the 
beginning and than during the gathering refinement there was no change in the quality of the 
shooting solution. The shooting was computed with some predefined quality (based on the per-ray 
energy settings). If we wanted a higher quality for the shooting input we needed to setup such 
quality already at the beginning and wait for its computation. However even if we use PRR radiosity 
for shooting it is not a progressive two-pass radiosity. 
We can solve this problem using an approach described by the schematics on the Figure 1. If we can 
do gathering from early stages of the refining shooting solution, we can solve the probem of initial 
computation. We need a new weighting for two gathering solutions from different shooting inputs. 
For the purpose of designing it we have ran several test computations on different scenes.  



 

Figure 1: Block diagram of the Progressive Two-pass Radisoity algorithm . 

We ran a precise gathering step from different shooting solutions. The results of the shootings were 
improving for each computation while the number of gathering rays was the same. The Figure 2 
shows the RMS error of the gathering solution based on refining shooting radiosity solutions. We 
used two approaches. One series of test was computed with and one without the ambient term added 
to redistribute all the unshot radiosity that the shooting wasn’t able to process anymore.  
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Figure 2: The RMS error of the gathering radiosity computed from refining shooting solution. You 
can see that using the ambient term allows us to use the weighting proportional to the number of rays 

also in our algorithm without any consideration about the input shooting radiosity quality. 

As you can see in the non-ambient version, from some point the gathering quality was nearly the 
same without any improvements as the iteration process progresses. The initial increase in the RMS 
was due to a low quality of the shooting radiosity. The per-ray energy was too large to be able to 
distribute the light through the scene. Much of it was left in the unshot radiosity values, because the 
values on patches were too low to emmit at least a single ray. From the point where the number of 
rays used for shooting was large enough to give solutions with the same percentage of unshot 
radiosity from the total radiosity in the scene, the quality of gathering step was not increasing with 
the quality of shooting. The threshold value of unshot radiosity was set to 1%. In the radiosity with 



ambient term used for final energy redistribution the initial RMS increase was very low, actually only 
in absolutely poor solutions. Nearly all tests have shown the same RMS error from a reference 
solution. Figure 3 is showing some results for a Cornell box scene. 
Figures 2 and 3 show that if we gather from two different shootings we don’t need to count the 
different quality of the inputs and the weighting is the same as in progressive refinement gathering 
radiosity (chapter 2.2). The only requirement is that both shootings have to distribute nearly all of 
the energy in the scene or we have to use the ambient term to redistribute the remaining energy. We 
cannot forget that if we don’t distribute nearly all the energy, the gathering step will provide a 
smooth, but darker solution. It will lack the unshot radiosity that it can’t count in. 

 

Figure 3: The results of test on a Conell Box scene. The upper row of images shows improving 
shooting solutions with ambient term and the number of rays used while the lower one is made of 

gathering solutions from above shootings. You can see that even the quality of shooting is low, the 
gathering gives nearly the same results. There were nearly 8E+8 rays used for each gathering. 

This observation of gathering solution quality let us write the following algorithm: 
 

Compute initial shooting solution 
Use it as input for gathering step with some per-patch ray count. 
Until the quality is satisfactory do the following 

Compute new shooting step 
Combine it with the previous one 
Use this refined solution as input for next gathering 

with new number of gathering rays. 
Combine this gathering step with the previous one 

depending on the per-patch ray counts 

Algorithm 3. Progressive two-pass radiosity 



3.2 Iterative Combined Monte Carlo Radiosity 

The previous algorithm posses the progressivity, efficient energy distribution by shooting and smooth 
illumination by gathering featured by the two-pass radiosity methods. As already discused in the 
chapter 1.5 both radiosity algorithms have problems dealing with the direct illumination. We have 
mentioned that it is very useful to divide the computation into two steps, for direct and indirect 
illumination [Shir91]. Note that looking at the gathered picture we can see that in the indirect 
illumination the gathering radiosity is much better. Even when using coarse shooting step for input to 
the gathering, the indirectly illuminated parts of the scene are very good and smooth. On the other 
hand, the direct illumination in the shooting approach behaves little bit better than in gathering 
(Figure 4). It shows that with using a direct combination of shooting solution and gathering solution 
into one, we can dramatically enhance the quality of at least the indirectly illuminated parts of the 
scene. Further more, for highly complex scenes the gathering step can produce much smoother 
solution even with fewer rays than the shooting does.  

 

Figure 5. Block diagram of the Iterative Combined Monte Carlo Radiosity 

This algorithm uses an intermediate solution that is converging to the result. We switch between 
shooting and gathering steps and their solutions are added (combined) to the intermediate solution to 
improve it. The improving solution is also used as the input to the gathering steps. Combination of 
empty intermediate solution and any other (shooting) is simply an assignment. 
The last computed combined solution is always used as an input to the gathering. The convergence 
criterion can be defined as reaching a threshold value of difference in radiosity of patches in 
consequent iterations. A prove that the combined method converges to the correct solution is not 
available yet. But if the error can be controled, the algorithm should theoretically bring better 
convergence rates than any usual single/two-pass stochastic algorithms before. The basic problem 
with it is the combination of shooting and gathering solutions into one. This has to be done very 
carefully. It is clear that both radiosity solutions of the same scene have the same expected value. 
Therefore the combination is possible. The problem is that we want to reduce the variance as much 
as possible to speed-up the convergence. As in the PRR we need to develop a good weighting of 
solutions based on the parameters of simulation of either shooting or gathering or combined 
radiosities. 
 

We initiate an empty intermediate solution (IM) 
Repeat until convergence 

Do a shooting solution with defined per-ray energy 
Combine this shooting with IM solution 
Do a gathering from actual IM solution 
Combine this gathering with the IM solution 
Update the parameters for shooting and gathering 

 

Algorithm 4. Iterative Combined Monte Carlo Radiosity 



At the moment we will not present any real solution to the weighting for this combined radiosity 
method. We just want to present some basic ideas about what we have to keep in mind and what 
could be the way to follow when looking for the solution. This is a problem for a future work. 
As we already saw even a good shooting solutions is useless when we use few rays for gathering. 
Bad combination of such solutions could destroy the final results. A good idea for solving the 
weighting problem could be a definition of radiosity solution accuracy that can express the 
correctness of either shooting or gathering radiosity in a compatible way. Having such accuracy 
measurement the combination weighting could be derived from it. In general the quality of Monte 
Carlo radiosity depends on the number of rays used for the simulation. One possible way of accuracy 
measurement is to count the total number of rays used during the computation. But because of the 
absolutely different usage of rays in each algorithm we have to check whether one ray for shooting 
has the same importance on the quality as for gathering. It means that if we use some number of rays 
for shooting and then the same number of rays for gathering, we have to compare the quality we 
have got.  

4. Conclusions 

Two-pass radiosity is showing to be very efficient in terms of convergence and perceptual quality, 
because it generates very smooth and visually plausible results. It also helps to solve some problems 
of high density meshing in complex scenes. In this paper we have presented two new designs of two-
pass radiosity algorithms. The first method introduced the progressive refinement into two-pass 
stochastic radiosity. The results show that we don’t have to design new special weighting for 
refinement of two-pass methods. The output images are perceptually very good much sooner during 
the computation. Progressive refinement is very important for users who want to be able to control 
the quality precisely, because the radiosity computations are still very time consuming. We believe 
that the Iterative Combined MC radiosity should be a hopeful algorithm, but we still din’t implement 
it thus there are no real results about it. We have to do more research in this field to check all its 
possibilities and advantages.  

5. Acknowledgement 

I want to thank everyone who helped me writing this paper, especially Mr. Pavol Eliáš, my diploma 
thesis supervisor, who helped me getting into the field of stochastic radiosity and gave me many 
valuable advices and reviewed this paper. I also want to thank Mr. Andrej Ferko for his support and 
help he gives to the students of computer graphics at Comenius University in Bratislava. Finally 
I want to thank my parents for their love and support they gave me. 

6. References 

[Cohe93] Cohen, m., Wallace, J.: Radiosity and realistic image synthesis, Academic press 
Professional, 1993. 

[Elias] Eliáš, P., Purgathofer, W.: Monte Carlo radiosity: Comparison study. 

[Elia00] Eliáš, P.: Stochastic radiosity methods, Master’s thesis, Comenius University in 
Bratislava, 2000. 

[Feda93] Feda, M., Purgathofer, W.: A progressive ray refinement for Monte Carlo radiosity, in 
Proc. of the 4th Eurographics workshop on rendering Paris, France, 1993. 



[Glas95] Glassner, A.: Principles of digital image synthesis, Morgan Kaufman publisher, 1995. 

[Kaji86] Kajiya, J.: The rendering equation, in Computer graphics, Proc. of Siggrph’86, vol.20, 
No.4, 1986. 

[Patt92] Pattanaik, S., Mudur, S.: Computation of Global Illumination by Monte Carlo 
simulation of the Particle model of light, 3rd Eurographics workshop on rendering, 
Bristol, England, 1992. 

[Sber95] Sbert, M., Perez, F., Pueyo, X.: Global Monte Carlo: A progressive solution, 
Rendering Techniques’95 (Proc. of the 6th Eurographics Workshop on Rendering, 
Dublin, Ireland), Springer, 1995. 

[Shir91] Shirley, P., Wang, Ch.: Direct lighting calculation by Monte Carlo integration, In 
Proceeding of 2nd Eurographics workshop on rendering, 1991. 

[Shir91a] Shirley, P.: Time complexity of Monte Carlo Radiosity, in Proc. of Eurographics ‘91, 
North Holland, 1991. 

[Shir94] Shirley, P., Sung, K., Brown, W.: A ray-tracing framework for global illumination, in 
Graphic Interface ‘91, pages 117-128, June 1991. 

[Shir94] Shirley, P., Chiu, K.: Notes on adaptive quadrature on the hemisphere, Technical 
report no. 411, Department of computer science, Indiana University, 1994. 

[Shir] Shirley, P.: Hybrid radiosity/Monte Carlo Methods. 

[Szir00] Szirmay-Kalos, L.: Monte-Carlo methods in Global Illumination, Script, Institute of 
Computer Graphics, Vienna University of Technology, 2000 


