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1 Abstract

In this paper we analyze applications of Douglas-Peucker algorithm to compres-
sion and feature line extraction of 3D models from digital scans introducing a
multiresolution model that enables a fast description of the object at different
levels of details through the use of a unique rearrangement, stored in a file,
of the input data set. The multiresolution algorithm, which reaches high data
compression rates while producing fair approximation, is used to simplify each
point of the input data set according to its scale, its basic shape type and its
geometric parameters. Finally, object feature lines are reconstructed using shape
information previously found. The proposed algorithm is able to segment the
object into meaningful patches, which represent form features of the object,
resulting in an important tool for reverse engineering and rapid prototyping.
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2 Introduction

While in the traditional approach, objects are manufactured starting from a CAD
model in reverse engineering real parts or object prototypes are transformed into
CAD-like models that can be modified with different mathematical transforma-
tions providing a great flexibility to the design phase. The process of CAD model
starts from a set of points, which are acquired on an existing object with several
methods such as tactile or non-contact ones. The resulting data set, unorganized
(laser scanners) or partially ordered (digitizing machines), is transformed into
polyhedral or smooth surface converting therefore its discrete description into a
piecewise, continuous model.

A basic step towards the creation of a CAD-like model, is the so-called segmen-
tation. Its aim is the logical subdivision of the input, generically a set of points, in
subsets such that each of them contains points belonging only to a specific surface
type [2]. The approaches used for the segmentation process are general or dedicated



[3]. The first ones use only general knowledge of surfaces to execute the segmen-
tation, while the dedicated approaches, that are preferable, search for particular
structures in the data set [3]. Furthermore, the connectivities and continuity in the
data structure of the model is very important and a low-level description, such as
a simple collection of faces in not enough [2] and a decomposition into functional
patches would be desirable in the majority of CAD/CAM applications.

In this sense, the work presented in this paper is concerned with the definition
of high-level polyhedral models of the object skin, which is eventually described
as a set of feature lines [4]. Starting from this model, we are seeking to segment
the surface into machining meaningful patches representing form features of the
object.

Out approach to set up a high level description of a data set is described in the
following steps:

e level of detail simplification: compression through a multiresolution analysis.
This phase aims at reducing sampled points to a minimal number discarding
the ones which do not locate important shape elements. Therefore the main
goal of simplification is to generate a low approximation that maintains the
main features and overall appearance. The number of sampled points nec-
essary to represent a data set accurately depends on the model and on its
characteristics with respect to its morphological structure,

e scan line analysis: shape feature classification using a scale-base and geomet-
ric characterization of features that allows to distinguish local and global
details,

o feature lines detection: extraction of feature lines or curves achieved joining
points which lie on adjacent scansion lines judged similar according to the
measures defined in §5.

The paper is organized as follows. First data compression and simplification tech-
nique are presented. Then the measures used to classify the shape feature of the
scansion lines are introduced and, finally, the determination of the feature lines
and considerations about the segmentation process are given.

3 Data compression

New scansion technologies have accelerated, on the one hand, the manufacturing
process providing dense data set in order to achieve accurate reconstructed
products and have brought, on the other hand, the need of discarding redundant
information. The aims of data compression [2, 3, 5, 10, 16] is to preserve the
shape and to control locally the approximation error. Its main advantages are a
large decrease of storage requirements, a lower cost for visualization and a fast
transmission, which is important for web-based applications where bandwidth
limitation becomes a major concern. Furthermore, this step also represents a



preprocessing with respect to classification of shape features.

In the choice of data compression algorithms for reverse engineering, the
constraint is the no-repositioning of sampled points, that is, the compressed data
set has to be a subset of the original one.

First of all, the sampled object is assumed to be a 2.5D surface with points
distributed on parallel planes that define a sequence of scansion lines.

Definition. Let be F = {(z,y9,2) € R?® : f(z,y) = z} a single-valued
function defining the object surface, and S := {(x,y,2) € R*: ax + by + c = 0}
a plane (@ # 0 or b # 0). A scansion line L is an ordered sequence of
(n + 1) points L = {Py(zo,v0, [(T0,Y0))s- - Pu(Tns Yn, f (20, yn))} such that
L C FNS and at least one between (xg,...,z,) and (yo,...,yn) is a closely
increasing or closely decreasing sequence. Then, the sampling of F' with respect
to the scansion direction defined by the normal vector (a,b,1) to a set of
planes S; = {(x,y,2) € R® : ax + by +¢; = 0} ¢ = 0,...,k is represented by
Lo, ..., Ly where each L; is the scansion line on F' with respect to S; with ¢; > ¢;41.

Given a 3D-set P = {P;}!" . associated with the polygonal curve S(F, ..., P,)
obtained connecting consecutive points P;, Pi11,7 = 0,...,n — 1 with a line seg-
ment, we want to define a new set @ = {@;}™, such that

e () is a subset of P (m < n),

e the error between the data points and the fitted line is less than a maximum
tolerance with respect to the Hausdorff distance d defined by the following
relation

d(X,Y) == max{dx(Y),dy(X)}
where dx(Y') represents the distance of Y from X defined as

dx(Y) := sup{ inf {[lz — y||2}}
yey zeX
VX,Y C R? with || || Euclidean norm.

Suppose we are given a chain with n segments, the Douglas-Peucker hierarchi-
cal algorithm [3, 16] sorts points { P}, in decreasing order of importance with
respect to the criterion that will be defined using the distance d. Therefore we
have to settle the permutation j : {0,...,n} — {0,...,n} that represents the
rearrangement of the input data set.

The first step selects endpoints of the line segment S(F,..., P,) choosing
7(0) = 0 and j(1) = n. Constructed S(Pj). Pjn)), which combines Fy to P,, the
algorithm picks out the point P* that satisfies the relation

d(P*,S(Py, o)) = _max{d(P, (P, P.)}-



If P* = P we update j choosing j(2) = k and we split the chain at this
vertex obtaining two new polylines FPyP, and P,P,. In every subset of the
input line the splitting point, which is the farthest vertex from the line seg-
ment that joins local endpoints (i.e local anchor and floater), is recursively
selected and the index of the point with maximum distance gives the value of j for
the step in issue. After at most (n—1) steps, points will be hierarchically reordered.

The method provides a sequence (Pj;, d!' )i that is used for the description
of the object at different levels of details: for instance, to find the polygonal chain

that satisfies the relation
d(S(Fo,-.., Pn),S(Qo, ..., Qm)) <€ (1)
the choice is to set {Q; = Pj()}i~, with m such that
dif > e 1=20,...,m, and dg+1<e

where the reduction percentage (100 ”_n—ﬁ:;“l) % depends on the setup tolerance.

The common use of this simplification method has a different approach to
reduce the number of points of a dense sampled data set with the use of a tolerance
band €. At a given step we approximate the chain from P; to P; with

e the line segment P, P; if the farthest vertex P* from this segment has distance
at most €, otherwise

e we will split the chain at this vertex applying the criterion recursively to the
new polylines P P* and P*P;.

We observe that the output of the algorithm is equal to the previous subset of P
but it has been preferred to stop the calculation after (m + 1) steps constructing
the set of indexes {j(0),...,7(m)}. Therefore the upper bound of the evaluation
of the distance formula, which is the most time consuming part of the procedure,
is O(mn) rather than (nlogsn) required for a total rearrangement of the data set [6].

We can modify the previous situation such that will be demanded in input to
set up a data reduction rate rather than a tolerance band. This choice is justi-
fied by a greater simplicity that it finds commonly in estimating this parameter
regarding the choice of the maximum approximation error €. Set up a value k we
consider the set {Q; = Pji)}, with m := [252-E x (n+ 1)] where [] is the integral
part. This choice allows to obtain the polyline S(Qq, . . ., @,,) which fulfills (1) with
€= mini:17.._7m{d§{} and the result is achieved writing in an ASCII file, for every
polyline, the rearrangement represented by the permutation j and its array of dis-
tances (diy)™, (d% = d% = 0). To summarize, our approach to compression allows
to reduce the time needed to switch from a level of detail to another, without addi-
tional cost: indeed only the simple reading of the indexes j(i), which characterize
the points of the output, is required without any distance computation.




4 Multiresolution analysis and simplification

In this section, we want to define the multiresolution approach to the description
of a sampled data set through the Douglas-Peucker. Comnsider a set of points
in R?, expressed as a column vector of sampled points S, = [Py, Py,..., P,]%.
We wish to construct a low resolution version S,_; of S,, with a fewer number
of points m. The standard approach [2] to its construction is represented by a
(m,n + 1) matrix such that the relation S, ; = A, % .S, holds. In the filtering
process from S, to S,_; (n —m + 1) points will be omitted with an amount of
detail lost that will be estimated regarding the Hausdorff distance d. We indicate
therefore with D,,_; the lost detail of S,, through the relation D, = B, * S,
with B, (n —m + 1,n + 1) matrix and we refer to A, and B, with the term of
analysis filters while the splitting of S, in (S, 1, D, 1) is called decomposition.
Applying recursively this method we are able to express the initial set of points
through a hierarchical structure of low resolution descriptions Sy, ..., S,_1 and of
details Dy, ..., D,_1. This process, called filter bank, is summarized in (2).

Since S, as we will see in the following pages, can be reconstructed from the
sequence Sy, Dy, ..., D,_; the filter bank represents a hierarchical transformation
of the sampled data set.

Introduced the outline base for the multiresolution analysis we have to specify:

e the criterion of construction of Ay and By Vk=1,...,n — 1,

e the error achieved in the compression process from .S, to a lower resolution

S]m

e the expression of S, through Sy, Dy,..., D, _1.

To this end we consider a decreasing sequence of real non-negative tolerance bands
that belong to the a—set {dy,...,d, :dy > ... > d,, n > 1} and we define with

e S; the data set achieved applying to Sii1 the Douglas-Peucker algorithm
with tolerance band dy,; VE=0,...,n — 1,

° Dk = Sk+1 —Sk (DkﬂSkZQ),Sk_H :SkUDk ) Vk::(),...,n—lthedata
set of detail,

describing the step in issue with the following scheme

Spr1 — Sy,
N\
D;..

Each element of the a-set represents the width of a tolerance band and the sim-
plification error d,. From previous relations we have that S, C Sy, and we can
construct the sequence

SH €S C...C8,



and its filter bank

S, —An S | — — 5 —M S,
N\ N N\ (2)
D, , Dy
with
Sk =A{Pji) € Sk : dy > dipa} = {Pjs) € Sn : diy > dpg}
and

D, = {PJ(L) €S, : d?[ € [dk+2,dk+1>}.

We conclude that Sy is achieved applying the algorithm with band dj; either
to S,, or to Sj.

We can summarize the previous relations as
n—1
Sn = Uk:ODk' U SO

that is the original data set is uniquely decomposed using the low resolution de-
scription Sy and the detail sets (Dy)7Z). Furthermore, filter and analysis operators
are expressed through the following relations:

1 iftd, W >d 1 itd, " <d
A (r.s) = H 2 Ag41 Bi(r.s) = H k+1
(1) { 0 else, k(rs) 0 else.

Finally, the evaluation of the error carried out in the compression process from S;
to S (i > k) is
d(Si, Sk) < dpq-

The accuracy of the process has to be tuned on the width of the value d,, and
all lines have to be simplified using a unique a-set of tolerance bands. Problems
may arise in the choice of this set due to unbalanced density and dimension of
feature shape (a possible way to solve this problem is re-calibration of the a-set).
In shape line analysis tolerance bands are defined using the following relation

d; :=1 X 1=1,...,n

1
n

with d; maximum global error (i.e maximum error of every polyline).

5 Scansion line analysis and feature line detec-
tion

The aim of scansion line analysis, which relies on the assumption that the shape
of next scansion are similar for densely defined data set, is a classification of shape
features and it represents the background for shape reconstruction. Therefore
feature lines of the object will be locally compound of similar points with respect



Figure 1: Original data set with 1.328.531 points structured in 1.214 polylines

to shape similarity defined in the following.

As described in the previous section the Douglas-Peucker method, with a user
defined a—set, enables to obtain a first description of points of a scansion line
with respect to size of shape features. Beside this scale analysis, which codes sizes
of features, we consider geometric parameters with the aim to classify their type.
The adopted scheme (see tab.1), which uses three points to describe a feature,
identifies shapes meaningful for producing a decomposition relevant with respect
to traditional basic approach in CAD contexts.

The second classification (see tab.2), based on angular measures §, 3 that
are introduced regarding the same triplet of points according to the previous
classification, distinguishes among shape features evaluating their amplitude and
orientation.

Using the a-set, the previous classification and the angular measures we are
able to introduce three basic similarity “relations” on the input data set:

e o-width similarity: P € Lp,Q € Lg
Pr~,Q <= width(P) = width(Q)

where width(K) is the a-width that characterizes the point K in its scansion
line,



Figure 2: Result of compression: compressed data set with 66.427 points, date
reduction 95% .

I_shaped I shaped |_shaped
profusion-{1) profusion-{2 cepression-(1
|shaped Right-up-slope  Left-uprslope Step-up-(1 Step-up-(2
depressior-(2] \
Left-dowr-slope Right-down-slope Steprdown-(1) Step-down-(

Figure 3: Tab. 1 Mathematical description of the primitive shape elements. For
each configuration, squares represent points where the label will be added



o feature similarity: P € Lp,Q € Lg
PropQ <= T(P) = T(Q)
where T'(K) represents the class of point K according to table 1,
e geometry similarity: P € Lp, Q) € Lg
P~g(Q <= their orientation and inner angles are similar

(i.e they differ less than a given threshold).

Beside shape characterization, the suggested measures are used, on the one
hand, for evaluating similarity among shape features and, on the other hand, for
reconstruction of the last ones. This method recognizes feature lines in directions
almost orthogonal to the scansion one by linking similar points from a line to a
next one. Using the previous relations, two points P, Q € R? will be connected if
and only if

PNa Q7 PNTQ: PNGQ

Moreover, distance among points is considered with the purpose of maintaining
fidelity of line recognition that decreases increasing the first one. Following the
approach in [15] an influence cone, with a variable axis oriented in the direction
of the lines to reconstruct, is used to select portion of adjacent line relevant for
reconstruction. We underline that a crucial part of the algorithm for detection of
feature lines is the selection of the part of similar points, because there may be a
considerable number of candidate points as well as none. Furthermore, scanning
direction is fundamental because feature lines whose directions are almost parallel
to it will be, generally, impossible to detect with this approach.

6 Conclusion and further works

The proposed method introduces the multiresolution analysis and shape feature
detection of a highly detailed and densely defined data set with the use of a unique
rearrangement, stored in a file, of the input which enables a fast description of the
object at different levels of details. Furthermore, any level of detail can be accessed
directly maintaining geometric behavior according to the needs of the problem
domain where a rough approximation Sy is superseded by subsequent refinements
(Do U Sp), (DyUDyUSy), ..., (UpZbDy U Sp). The algorithm reaches therefore
high data reduction rates while producing fair approximations.

Our strategy to subdivide a surface in shape features, is based on the consideration
that a scansion line is a section of the surface and this imply that the first one
contains sections of the shape features of the surface. The segmentation, that
is the classification of each point as belonging to a specific feature class, will be
driven by the feature lines detection. The method that we are developing considers
simple and compound of features in the surface, which can be detected thanks to
multiscale approach That provides a hierarchy among points features.



Figure 4: Tab. 2 Classification of feature based on angular measures.

] =
Original set of profiles for 32134
points

Figure 5: Application of the method to a 2.5D example.
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