
Postprocessing and Visualization of peripheral CTA data in clinical 
environments 

Armin Kanitsar Rainer Wegenkittl Petr Felkel 
Institute of Computer Graphics and 
Algorithms Vienna University of 

Technology 

TIANI Medgraph VRVis Center Vienna 

armin.kanitsar@cg.tuwien.ac.at rainer.wegenkittl@tiani.com petr.felkel@vrvis.at 

Dominik Fleischmann Dominique Sandner Eduard Gröller  
Department of Radiology 

University of Vienna 
Department of Radiology 

University of Vienna 
Institute of Computer Graphics and 
Algorithms Vienna University of 

Technology 
dominik.fleischmann@univie.ac.at dominique.sandner@akh-wien.ac.at meister@cg.tuwien.ac.at 

Abstract 

This paper deals with computed tomography angiography based vessel exploration. Large image 
sequences of the lower extremities are investigated in a clinical environment. Two different 
approaches for peripheral vessel diagnosis dealing with stenosis and calcification detection are 
introduced. The paper presents an automated vessel-tracking tool for curved planar reformation. A 
user interactive segmentation tool for bone removal is proposed. 

Keywords: computed tomography angiography, semi automated segmentation, optimal path 
computation, vessel tracking. 

1. Introduction 

Lower extremity arterial disease is a significant health problem in the industrial world. The 
prevalence of symptomatic disease (intermittent claudication) in patients between 55 and 74 years 
of age is 4.6% [3]. Nowadays, intra-arterial digital subtraction angiography (iaDSA) is the 
pretherapeutic imaging technique of choice. iaDSA, however, is an invasive and costly procedure, 
which requires arterial catheterisation. A non-invasive technique for imaging the entire inflow and 
run off vessels is therefore desirable. 

Latest technical developments in computed tomography (CT) —notably multi-slice helical CT—
 allow an unprecedented volumetric resolution and a widespread anatomic coverage. A multi-slice 
helical CT thus has the potential to accurately show the entirety of the lower extremity vessels with 
a single intravenous contrast-medium injection at a high, near isotropic spatial resolution. 

The data acquisition time for a dataset of the lower limbs is in the range of minutes. On the other 
hand, the post processing time using conventional techniques takes up to four hours. However this 
step is necessary in order to extract useful information from the huge amount of acquired data. In 
order to make this investigation method applicable in the daily clinical use, the post processing time 
has to be shortened. 



2. Peripheral vessel investigation 

Computed tomography angiography (CTA) datasets of the peripheral vessel structures belong to the 
largest datasets in medical imaging. Current resolution is up to 1500 slices, each slice containing 
512 to 512 pixels with a depth of 16 bit. Therefore for the practicability of CTA of the lower limbs 
it is crucial to provide an appropriate visualization tool for vessel investigation. It turned out that 
this tool should have the following properties: 

• Easy and fast to handle, as the tool should be used in a clinical environment for routine 
purposes. 

• Adequate quality of the results, which means the results should be diagnosable. 
• Robust algorithms are required as the anatomic variations are quite large due to different 

vessel diseases. 
Stenoses, calcifications and occlusions are the main arterial diseases that shall be investigated with 
CTA. A stenosis is a narrowing of the arterial flow lumen. Arterial stenoses are caused by 
atherosclerotic plaque (figure 1a). A complete obstruction of a vessel is referred to as an occlusion 
(figure 1b). The blood flow is redirected through secondary vessels, which circumvent the occluded 
vascular segment, and which are called collateral vessels. The vessel wall of diseased arteries, as 
well as atherosclerotic plaque may calcify. With CT, calcified tissue is of high attenuation. In figure 
1, several areas of calcification can be seen (e.g., figure 1c). 

 
Figure 1: Different arterial diseases: Stenosis (a), Occlusion caused by calcification (b) and 

Calcification (c). 

3. Visualization Methods for CTA 

Basically two different approaches were followed in order to provide a feasible tool for 
investigating CTA datasets [5]. The first is to generate a curved planar reformation (CPR). This 
method is already used in medical environments. Therefore, it is a visualization technique that is 
very likely to be accepted for daily clinical use by the medical personnel in hospitals. One of the 
biggest disadvantages of this technique is an extremely time-consuming and error prone manual 
generation process. For this reason, a semi automatic generation method is desirable. Such an 
approach is described in section 3.1. 



The second approach is quite different. As the vessel tree in the lower extremity areas consists of 
a huge amount of blood vessels of all sizes it is very difficult to identify every single vessel. 
Nevertheless, these small vessel structures are important to a radiologist. For instance the lumen of 
the small collateral arteries may allow a deduction of the spatial extend of a stenosis of the main 
artery. The basic idea of the second approach is that if it is difficult to identify the structures of 
interest, it might be easier to hide structures of less or no importance. Following this approach the 
whole vessel tree can be made visible with a maximum intensity projection (MIP) by removing the 
bones from the dataset first. This method is described in section 3.2 in more detail. 

It turned out that both visualization techniques are needed in order to produce results with 
diagnostical value. An overview of the whole vessel tree is provided by the MIP visualization. In 
addition to that the extend of calcification can be determined as every calcified area will be 
visualized in it’s entirety. Precise information concerning the vessel lumen and the extension of the 
stenoses are made available by the CPR visualization method. 

3.1 Automated CPR Generation 
Planar cross-sections through volume data are often used for investigating CTA datasets in medical 
imaging. This is a very circumstantially method for vessel investigation as only small parts of the 
vessels are visible within one planar cross-section. For this reason we want to compute a cross-
section through the centerline of a vessel.  

The central line of a vessel is seen as a 3D curve. A line is defined through each point of this 
curve, which is parallel to the horizontal axis of the viewing plane. This line is swept through the 
3D curve, generating a curved plane (see figure 2). The voxels in the close neighborhood of the 
plane are resampled. Finally the plane is flattened and displayed in 2D. This process is called curved 
planar reformation (CPR). 

Taking the vessel central axis as curved line for the curved planar reformation prevents the vessel 
from being covered by bony structures. Furthermore, the true vessel lumen can be determined in this 
representation even if calcified vessel walls are present. 

 

Figure 2: Left: Vessel centerline (3D curve). Right: Curved plane in 3D space. 

Finding the vessel central axis can be defined as a graph theoretical problem where each voxel of 
the dataset is considered as a node and the transitions to the adjacent voxels as edges. Each edge is 
weighted by a cost function indicating the likeliness of being part of a contrast-enhanced artery. The 
cost function should introduce a low penalty if the edge is very likely to be within a vessel structure. 
Finding the path (from a user defined starting point to an endpoint) with the lowest accumulated 
cost within this weighted graph is known as the shortest path problem [1]. The resulting path is with 
high probability inside the arterial structure. Yet, the path is not necessarily the centerline of the 
vessel. This is, however, crucial for correct results, as deviations of the path from the central axis 



produce falsely simulated lesions. Therefore, the path has to be centered within the vessel before 
applying a curved planar reformation. First we explain the path search.  

3.1.1 Cost function 

The local cost function fC(x,y) we developed for a single step from a voxel x to the adjacent voxel y 
can be defined as: 

 )(),()(),( yfyxfyfcyxf LGIstepC +++=  (3.1) 

where a constant penalty cstep keeps the curvature of the path within the vessel low. The second 
component fI(y) punishes paths tracking into regions that are beyond the intensity intervals typical 
for contrast enhanced arteries. In the following equations f(y) is the intensity value of the voxel y. 
The thresholds clowerBorder and cupperBorder define the valid interval of artery density values. Within the 
smaller interval from clower to cupper no penalty is given, as this area is regarded as optimal. With this 
definitions fI(y) is: 
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The third function fG(x,y) results from the assumption that in the direction of the central vessel axis 
the gradient magnitude is lower than in the direction of the vessel boundary: 

 )()(),( yfxfyxfG −=  (3.3) 

Finally, the fourth component fL(y) prevents the algorithm from tracking along and into bones. A 
convolution with the Laplacian edge detector L is done and resulting values above a threshold 
cLaplace are identified as unwanted transitions to bony structures: 
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3.1.2 Implementation of the path generation 

First, the user defines a starting point at the root of the vessel tree (i.e. the aorta) and an arbitrary 
number of endpoints marking the ends of the peripheral arteries (see figure 3a). 
According to Dijkstra’s algorithm [1], all possible optimal paths to the starting point are calculated. 
A snap shot of this process, showing the current search space, can be seen in figure 3b. Because of 
the enormous size of the datasets two main performance improvements had to be done: 

• Caching temporary data: The whole dataset is subdivided into independent cache blocks. For 
each cache block temporary data structures as direction information and accumulated cost are 
allocated only if needed. Thus the memory requirements are reduced. 

• Discretizing the cost function: This method avoids the bottleneck of explicit sorting the nodes 
according to their accumulated cost [2]. The resulting complexity is linear to the number of 
voxels in the search space. Therefore, acceptable computation times can be achieved even on 
large datasets. 

The resulting path is taken as input to a vessel center approximation algorithm as described in the 
following section. 



3.1.3 Centering the path 

For each point of the computed path a cross-sectional plane of the vessel is computed. Within this 
plane the true center point is calculated. The algorithm consists of four main steps: 

1. Gradient computation: This step approximates the tangent at each voxel of the original path. 
A B-spline curve is used in order to smoothen the gradient. 

2. Plane construction: A 2D cross section is extracted from the 3D dataset according to the 
current point of the original path. It’s generating vector is calculated from the B-spline curve 
(tangent vector). 

3. Center approximation: The true center within the 2D plane is approximated. This is done by 
shooting rays from the original point in the direction of the border of the vessel. Using the 
points at the intersections of rays and border an approximation of the center point is 
computed. Afterwards, the retransformation into 3D space is done. 

4. Path reconstruction: The new path consists of holes and loops because the points were moved 
in 3D space during step 3. These artifacts are removed using a B-spline curve again. 

The centered paths can be seen in figure 3c. 

 

Figure 3: User-defined starting point (top) and endpoints (bottom) (a), path generation process (b) 
and calculated centered paths (c). 

3.2 Semi-automated Segmentation 
Because of the large datasets the segmentation process is kept straightforward. The user may alter 
the parameter settings according to the different anatomy of different parts of the body. Together 
with the capability of user intervention regarding the type and the spatial connection of identified 
objects, the method provides a useful tool for the segmentation of bones. This approach produces 
results, which are of diagnostical value. 

The algorithm is working on so called slabs. A slab consists of several spatially adjacent volume 
slices. Typical 30 to 50 slices are combined in one slab. The algorithm is applied independently for 
each slab. 



Basically the algorithm consists of 3 steps. First a rough distinction between the different objects 
is done. Secondly the objects are labeled. In the final step the correct shape is computed. A 
predefined set of parameters is used for each slab. The user can change this set of parameters during 
the segmentation process. For each slab the set of parameters consists of: 

• tclass: Threshold is used to distinguish different objects. 
• texpand: Threshold to enhance already identified objects. This threshold handles partial 

volume effects and marrow inside the bones. 
• tlabel: Threshold, which separates between objects considered as bones or vessels. The 

threshold tlabel operates on the average density of objects. 
First, all slices are classified using a high threshold tclass in order to distinguish different objects. The 
classification process is based on the intensity value and on the gradient magnitude of the voxels. 
The connected regions are merged and finally labeled with tlabel according to their properties. The 
second iteration of the whole process (except of labeling) is done with a lower threshold texpand. This 
step improves the quality of the segmented dataset by reducing noise caused by the partial volume 
effect and bone marrow. As the merging of different object types is prevented, bones and vessels 
remain separated. After this step a user defined labeling of objects is possible. Finally the objects 
labeled as bone are removed. 

4. Results 

The test environment consists of a PII 350 MHz system with 704 MB main memory, running 
Windows NT 4.0 SR 5. The volume rendering was done on the commercial medical image 
processing system JVision/Space-Vision [7]. 

Table 1 and table 2 summarize the dataset properties and the computation times for each of the 
three sample datasets. Figure 4 presents the CPR of anterior tibial artery of the dataset in figure 3. 
Note the stent in the topmost enlargement. Figure 5 presents a comparison between the MIP of a 
dataset without and with a segmentation post-processing. 

 
Name Spatial resolution in voxels Size [MB] Volume size [mm] 

Patient1.dat 512 x 512 x 988 494,5 257 x 257 x 1070 
Patient2.dat 512 x 512 x 550 275,5 240 x 240 x 1102 
Patient3.dat 512 x 512 x 1000 500  260 x 260 x 1100 

Table 1: Parameters of the test datasets. 

Name CPR computation CPR user interaction CPR centering Segmentation 
Patient1.dat 16 min 20 s 1 min 30 s 1 min 14 s 25 min 41 s 
Patient2.dat 8 min 10 s 2 min 10 s 28 s 31 min 25 s 
Patient3.dat 15 min 40 s 1 min 20 s 29 s 18 min 11 s 

Table 2: Investigation time of the datasets. 



 

Figure 4: Coronar CPR (left side) and sagittal CPR (right side) of anterior tibial artery from the 
dataset in figure 3. 

 

Figure 5: A MIP of a segmented dataset on the right side and a MIP of the corresponding dataset on 
the left side. 

In figure 6 and 7 the results of the investigation methods of another dataset are shown. In contrast to 
iaDSA the heavy calcifications are clearly visible. Figure 7 shows non-photorealistic images done 
by direct volume rendering. For additional information refer to www.cg.tuwien.ac.at/~armin. 



 

Figure 6: A sample dataset with heavy calcification. The MIP of the original dataset (left-most 
image) and the segmented dataset (second image) is presented in this figure. The third and the right-
most image show the computed paths with a CPR corresponding to the path marked with an arrow. 

 

Figure 7: Non-photorealistic direct volume rendered images of the sample dataset. Calcifications 
and arteries are colored white and red (see http://www.cg.tuwien.ac.at/studentwork/CESCG-

2001/AKanitsar/). The outline of the body is visualized as guidance for the surgeon. 



5. Clinical Evaluation 

For clinical evaluation 3 datasets from 988 to 1202 slices were post-processed manually by an 
experienced radiologist [4]. The same datasets were also investigated with the methods described in 
this work. The results were printed on laser film and a vascular radiologist compared the results 
vessel by vessel for lesions. iaDSA was taken as a reference standard for this purpose (see figure 8). 
Completely removed arteries are clearly visible errors, as whole pieces of the artery are missing. 
Partially removed arteries are hard to identify as errors as they look very much like stenoses. Table 3 
shows that automated post-processing produces results, which are comparable to manually 
generated results in a much faster time. 

 
 Automated Manual 

 MIP CPR MIP CPR 
Completely removed arteries - - 3 - 

Partially removed arteries 3 - 1 1 
Investigation time 30 – 45 min 3½ – 4 h 

Table 3: Results of the evaluation process. 

 

Figure 8: Evaluation of the results at the AKH-Wien. 

6. Conclusions / Future Work 

We proposed in this work post-processing and visualization tools, which reduce the investigation 
time from 4 hours to 45 minutes. The results were of diagnostical quality and comparable to those 
manually generated. This could be accomplished by introducing a new cost model for vessel 
tracking. A tool for removing bones before visualization was implemented according to the special 
workflow of the diagnosis of peripheral arterial diseases.  

Next steps in this project will be to enhance the reliability of the algorithms. One approach might 
be applying more sophisticated filter techniques [6]. Another possibility is to introduce 
segmentation techniques like boundary based segmentation methods in order to be able to address 
the non-uniform intensity values of bony structures. 



7. Acknowledgments 

First of all I want to express my thanks to all people who were working on this project. Parts of this 
work have been done in the VRVis research center, Vienna/Austria, which is partly funded by the 
Austrian government research program Kplus. Other parts of the work presented in this publication 
have been funded by the FWF as part of project P-12811/INF (BandViz project). 

8. References 

[1] Barrett, W., and Mortensen. E., Interactive live-wire boundary extraction. Medical Image 
Analysis, no. 4, pp 331–341, 1997. 

[2] Falcao, A., and Udupa, J. An Ultra-Fast User-Steered Image Segmentation Paradigm: Live Wire 
on the Fly. IEEE Transactions on Medical Imaging, vol. 19, no. 1, 2000. 

[3] Fowkes, F., Housley, E., et. al.. Edinburgh Artery Study: prevalence of asymptomatic and 
symptomatic peripheral arterial disease in the general population. Int J Epidemiol, no. 20, pp. 
384–392, 1991. 

[4] Kanitsar, A., Wegenkittl P., et. al.. Automated vessel detection at lower extremity multislice 
CTA. Oral presentation at ECR 2001, March 2 to 6, 2001. 

[5] Kanitsar, A., Advanced visualization techniques for vessel investigation. Master’s thesis, 
Technical University of Vienna, Institute for Computer Graphics and Algorithms, 2001. 

[6] Sato, Y., Westin, C., et. al.. Tissue Classification Based on 3D Local Intensity Structures for 
Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, vol. 6, no. 2, 
pp. 160–180, April–June 2000. 

[7] TIANI Medgraph, www.tiani.com 

 


	Introduction
	Peripheral vessel investigation
	Visualization Methods for CTA
	Automated CPR Generation
	Cost function
	Implementation of the path generation
	Centering the path

	Semi-automated Segmentation

	Results
	Clinical Evaluation
	Conclusions / Future Work
	Acknowledgments
	References

