
Collision Detection and Impulse Dynamics in Real time
Applications

Petr Sovis
xsovis00@dcse.fee.vutbr.cz

Faculty of Electrical Engineering and Computer Science
University of Technology

Brno / Czech Republic

1. Abstract

The c omputers are getting more powerful and the 3D applications and g ames are getting more
sophisticated and therefore there is a need to make applications more realistic with keeping speed of
application. This can be done by using real-time physical simulation system but it i s not without
some accuracy degradation. In order to assure hight degree of realizm as well as to maintain high
performace of our graphic e ngine we must choose a n efficient and robust collision d etection
algorithm and the method for solving dynamic behaviours of modelled objects in the scene.

Keywords: closest feature, V-region, collision d etection, collision state, multi-point collision,
sliding mode, resting mode.

Introduction

There are two different approaches of doing physic simulation. You can choose between impulse
based approach and constraint approach. The impulse based simulation describes object behavior
like in no rmal world. Whole simulation time is divided into single steps, which are constant or
various portions of time and each step you integrate objects along theirs trajectories, you detect all
collisions in step. Then it must be merged and the first collision is solved and impulse of collision
contact i s applied on bo th ob jects. Then you must reset collisions, d ecrease portion o f time in
current step and look for next collision. When all work in step is done, you can d raw current
positions of objects and continue solving next time step. In other hand the constraint simulation is
based on collecting all collisions and impulses acting on object and solving equations system. This
approach can be faster but t here are some problems (equation system i s hard to solve when you
want to use friction and other physic simulation laws in collision response).
To make your system real-time, some inaccuracy in solving collision response a nd integrating
objects along theirs trajectory is needed. Fast collision detection is needed as well. In next chapters I
am going to describe, how to make simulation real-time.

2. Collision detection

The base of physic simulation is in real-time collision detection. Most of computing time is spent in
collision d etection and then the c ollision d etection must be very fast and v ery p recious. These
conditions are satisfied by some of closest features collision algorithms. My solving is based on V-

clip collision system [1]. This s ystem i s very easily updated to detect multi point collisions and
therefore you can solve more collision states.
Object is assembled from vertexes, edges and faces. Each of these parts is basic feature and each
feature has a subspace bounded by surfaces. These subspaces are called V-regions. All V-regions
covers whole a rea a round object and are not i ntersected. This means, that point outside ob ject
belong to one and only one V-region of object – and therefore point outside object points to only
one feature on object (to whom V-region point belongs). This feature found on object is the closest
feature on object to point.
The important t hing is to save neighborhood o f f eatures. Face is assembled from edges and
therefore face has edges as neighbors. Each edge has two vertexes and two faces as neighbors. Each
vertex has as neighbors all edges leading into him.
How to create V-regions to faces, edges and vertexes of object? Surfaces of V-region of face are
created from edges of surface and are perpendicular to face it belongs. V-region of edge is created
from 2 surfaces of neighboring faces and from surfaces created from directive vector of edge and
points of edge. V-region o f vertex is created from surfaces bounding n eighboring edges. The
creation of V-regions of features is shown on next picture .

Figure 1

If you create V-regions of all features in ob ject, you can solve main closest-feature searching
algorithm. The output of algorithm is pair of 2 closest features (one feature on each object). If you
can see, the algorithm can be in 5 states, depending on current features on objects. States can be
Vertex-Vertex, Vertex – Edge, Vertex – Face, Edge – Edge, Edge – Face. Other states are not
enabled, because is not possible to g et i n these states. The a lgorithm i s based on tracking along
objects and searching if the neighbor feature is not closer than actual one. If it is, the current feature
is updated to closer one. If no closer feature is found, the algorithm ends and the current pair of
feature is result. The power of this algorithm is that it never cycles between two features and always
ends even in states of penetration. The updates of current pair of features is not simple and each
state needs special solving. For example state vertex-vertex: Assign current vertex of object 1 as V1
and current vertex of object 2 as V2. Then search if V2 lies behind at least one surface of V-region
of V1. If it is true, feature V1 is updated to neighbor edge corresponding to surface of V-region of
V1 that V2 is lying behind. If it is false, take V2 and test the same for V1’s V-region surfaces and
update features in the same way. Other states are more complicated and the complete solution is in
[1].

Furthermore the algorithm returns the closest pair of features on both objects you are testing against
collision. Even in penetration states, the return is correct. Than you can extend algorithm with other
features. The a lgorithm returns only these combination o f pairs: Vertex –vertex, Vertex – edge,

Vertex – face, Edge- Edge, however the real collision occurs only in two states: Vertex – face and
Edge-Edge states. Other states aren’t real collision, but you must handle these states.

2.1 Collision response

As it was s aid, you can ob tain four states from collision d etection. We a lways s olve c ollision
response of two objects as collision of face and vertex and other states of collision we must convert
into this state. Next pictures show the conversion of other states and also response in common state
– Vertex –Face.

2.1.1 Vertex-Face collision

Figure 2

The most interesting thing of collision detection is point of collision P and normal of colliding face
n.

2.1.2 Vertex – Vertex collision

Figure 3

colliding vertexes (P1 of Object1 and P2 of Object2) creates surface of normal n (equal to vector
P1,P2) and collision point (one of P1,P2 or average of P1,P2)

n

P1 P2

P

n

2.1.3 Vertex – Edge collision

 Figure 4

To solve this state you must find the closes point X on edge E to vertex V. If you have done it, you
can make normal of collision n = X – E and point of collision one of E,X or average of them.

2.1.4 Edge –Edge collision

Figure 5

You must find one of the closest points on one edge to another (X on E1 closest to E2 or X on E2
closest to E1). Then you have point of collision. The normal of collision n is vector multiplication
of directional vectors of E1 and E2, bu t you must be sure that t he vector n leads from basic
collision edge to other edge (vector multiplication can give result in both directions, but only one is
correct). For example you have E2 as the base edge. Then you obtain by vector multiplying n or n’.
To choose the correct one test the n and n’ against normal of one of neighbor faces of E2 – F1 or
F2. The a ngle of n,F1 and the a ngle of n,F2 must be less than 90 d egrees (applying scalar
multiplication).

After this processing you h ave c ollision no rmal n and collision po int P. Then you can solve
collision by the c ommon way. The impulse separating bo th ob jects from each o ther acting in
collision normal n and his value is j. You can solve j in this way (summarizing results of [BAR])

n

V
 X

E

n

n’

E1

E2

Where:
 M1, M2 are the masses of objects,
 J1, J2 are the inertia tensors of objects
 r1, r2 are vectors from center of masses of objects to colliding point P
 e is reflection factor, it can be 0 for no reflection till 1 for perfect reflection

 is relative velocity of colliding points of objects

and velocities v1 and v2 are absolute velocities in colliding point for object 1 and object 2. They can
be counted from linear velocity of object vlin(t) and angular velocity vang(t) and vector r (point of
collision P – center of mass of object).
v(t) = vlin(t) + r(t) x vang (t).

Now apply impulse I = j*n to both objects and obtain new values of linear velocity and angular
velocity.

2.2 Collision determination

Even if collision between two objects is determined, it could not be real because the distance can
increase – the object is getting farther from other object. Then you cannot apply collision impulse
on ob jects and must l eave objects without change. This s tate ca n b e determined from relative
velocity vrel, when vrel < 0. If vrel > 0, then collision really happens.

2.3 Collision time searching

When you do phy sic simulation you h ave to know the exact time of collision and you must solve
collision b efore penetration h appens. This is a problem, b ecause this s earching can n ever ends.
Declare d(t) as the precious minimum distance of two objects, which are colliding in next time. You
are looking for the root (zero distance) of function d(t). If it is possible it should be the first root,
because the function d (t) can p ass zero d istance many times. Next picture shows the possible
behavior of d(t) in time.
 d(t)

 the root we are looking for

 0 dt t
 Figure 6

We recognize collision as the state that in t = 0 d(t) > 0 and in t = dt is d(t) < 0. Then you can use
standard methods of root finding. From the test t he Newton method with some linear correction
(10% linear decrement of d(0)) is fast enough. But the problem is, that the collisions can happen
shortly after each o ther. For example ball i s between two faces and reflects quickly from one to
other. If the ball is the nearly same size as the hole, where it is in, then collisions will come very

2

2
2

1

2
1

21

1

)()(
)

11
(

)1(

J

nr

J

nr

MM
nn

nve
j rel

+++

+=

)(2)(1)(tvtvtvrel =

often. Then system does only integration and even powerful computers slow down. Next problem
is, that if you start root finding with d(0) < 0 (objects are in penetration) then the root finding never
ends, this mean you must avoid penetrations of objects and always solve collisions in some time
before the penetrations happen. These situations are solved by next algorithms.

The root finding is slow, because if you want to get d(t), you must perform collision check and then
obtain d(t) from closest features. By establishing collision window you can avoid this s ituations.
Declare 2 d ifferent distances form object epsilon1 and epsilon2, where e psilon2 is greater than
epsilon1 and both are greater than zero d istance. When d (t) of objects is less than espilon2 and
greater than epsilon1 than you can solve c ollision in time t directly, bu t i f the d(t) is less than
epsilon1 than you must find t in which d(t) is greater than epsilon1 and is less than starting time t =
0. But this is more simple than root finding in every time collision occurs.

Figure 7

2.4 Multi point collision

Next step o f collision response optimalization is to find more than on e c olliding po int. In real
situations many collisions are face to face, but t he collision detection system cannot return state
face-face, so you must append some short code to obtain all point of collision (including collision
edge-face, face-face).

clipping edge E against V-region of F and
against parallel surface F’ in some clipping face determined by 2 edges against
distance k from F, result is edge-face state V-region of face F – result is face-to-face state

Figure 8

now it isn’t necessary to
look for root (collision impulse
is applied immediately)

now it’s necessary to look for root
tc and apply impulse in this time

trajectory after impulse

trajectory without applying impulse
 epsilon 2

epsilon 1

d(t)

t

F

F’

E

result

result

From state Vertex-Face test all edges leading from vertex against face of collision and test the angle
of normal of face and directional vector of each edge. If angle is less than some constant, than edge
lies on face and only work to be done is clip edge against V-region of face and parallel surface to
face of collision at some distance (distance k). If more than one edge has angle with face less than
constant, than face between edges lies on o ther f ace. Than you must clip face against collision
face’s V-region and face F’ (face in distance K) and obtain set of collision points.

In that way you ob tain complete set of collision po ints of object and o thers. The goal of this
counting is detection of sliding mode (2 objects are sliding at each other) and detection of resting
mode (one object lies on others).

Other goal is in that after applying impulse on every colliding points we separate objects for whole
step and other collision in this step cannot occur (because we apply gravity and external force only
once per a step). Exception is when other collision throw object back and collision occurs again.

2.5 Resting mode detection

Resting object mode is mode when the object lies on other object (objects). Then you don’t need to
recount collisions with ob jects that object li es on. Realize that object has a center of mass and
kinetic energy. When the center of mass and vector of external forces acting on it (like gravity and
some other field) points into projections of colliding points and the kinetic energy is less than some
value, then object cannot move and can become in resting mode. Resting mode is possible recount
after all collisions responses (it is not possible to evaluate it without collision).

 projection from cm
 in direction of gravity

 gravity

 Figure 9 Figure 10

Now it is problem to make convex cover from set of points and determine if center of mass lies
inside this convex cover.

cm

set of colliding
points and the
convex cover

3. Conclusions

All these methods are used only as extension of dynamic system and can very faster impulse based
simulation, so it can become real-time. But t here is more work to do. There must be solved the
application of friction in every collision response solving (the friction depends on force and plane of
collision), solve resistance of environment acting like an external force maybe behavior of objects
swimming in fluids. All of these extensions are very time consuming and must be fast.

4. References

[1] Brian Mirtich: V-Clip Fast and robust polyhedral collision detection, 1997

[2] David Barraf : Rigid body simulation – Unconstrained rigid body dynamics
 (C)1997, Robotics Institute, Carnegie Mellon University

