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Abstract

In this article, we ded with the problem of general matching of two images taken by a canera. To
find the @rrespondence between two images, we use the multiresolution wavelet analysis of the
image functions. The wavelet analysis is good at scade alaptivity and, therefore, very effedive in
general image matching. We test various wavelet functions, and evaluate their reliability.
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1. Two images matching problem

Suppese we have some part of a red or an artificia world. This world we cdl a scene.
Furthermore, we suppase that objeds of the scene ae static. This means that they don't move, and
don't change their shapesin time. Next we have a canera which moves in the scene. In certain short
time intervals, the camera takes images of the scene.

Suppase we have two images of one scene eab taken from a different position d the canera
The image matching problem refers to a process of establi shing the wrrespondence between eadt
pair of visible homologous image points on a given peir of images. Thus, we work with two two-
dimensional (2-D) discrete image functions. In order to find the correspondence, the images have to
satisfy some asumptions. Each pair of the images has no less than 50% overlapping, which is
defined as the minimum ratio between the scene surface ommonly depicted in bah images over the
surfaces depicted in eat ore of them. We require & least 60% overlapping, and the vergence angle
formed by both image planes to be less tiian

2. Wavelet analysis and image matching

In this chapter, we explain hov wavelet decompasition d 2-D image function f(x, y) is to be used
for matching two images.

2.1 Continuous 2-D wavelet transform

A continuows 2-D wavelet transform, as away of image decmposition, is a projedion d the image
function f(x, y) onto afamily of functions which are linear combinations (dil ations and trangl ations)
of a unique function W(x,y). The function W(x,y) is cdled a 2-D mother wavelet, and the
corresponding family of wavelet functions is given by

WX, y) = /sW(s(x-u,y-v)), where s u,vOR, (2.2)



and where s and (u, v) are called the scale and the trandation. The 2-D wavelet transform of the
function f(x, y) O L, isdefined by

+00+0o

T, f(s,u,v) = J’J’f(x, Y)W, (X y)dxdy . (2.2

This transform can be interpreted as a decomposition of an image function f(x, y) such that the
frequency spectrum of the transformed function T, f(s,u,v) has the same bandwidth in a
logarithmic scale s. The adaptivity to scale and trandation leads to its good locality in both
frequency and spatial domain. This property is suitable in our problem of general image matching.
Let the function W be a differential operator, then the transform T, f (s,u,v) will be a continuous

scal e-space representation of the image edges. If we use low-pass approximation operator ® instead
of high-pass differential operator W, the transform will produce a continuous scale-space
representation of the image approximations. From now on, we shall let ®(x, y) denote 2-D scaling
function corresponding to low-pass approximation operator, and W(x,y) the wavelet function
corresponding to high-pass differential operator. Similarly, we shall use ¢(x) for 1-D scale function
and (x) for 1-D wavelet function.

Example of wavelet function and scale function is shown in Fig. 2.1. In the figures, we can aso
see the amplitude spectrum of the wavelet functions and the scale functions. Notice the low-pass
characteristic of the scale function and the high-pass characteristic of the wavelet function.
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Figure 2.1: Gauss wavelet function (- 2xe™* ), scale function ( e ) and their amplitude spectra

2.2 Continuouswavelet transform and image matching problem

From previous chapter, we aready know that when using the 2-D continuous wavelet transform
T, f(s,u,v) or the 2-D continuous scale transform T, f (s,u,v), we can decompose the image
function f(x,y) on different levels of resolution (depending on the scale ). On the coarsest level, we
can easily find singularities (such as edges, corners, peaks etc.). Then we can track them down from
a high level (coarse) to the lowest level (detal). In this way we can determine the whole
correspondence between two images.



To demonstrate this point | will give you an example. Figs. 2.2 - 2.4 show the maxima of
continuous Gaussian wavelet transform of two 1-D image profile functions along their homologous
epipolar lines. It can be clearly seen that from the scale 32 downwards, the maxima correspondence
can be easily tracked down. Homologous maxima have been determined by a naked eye, and are
signed by homologous numbers. We can extend the same idea to 2-D image matching.

Figure 2.2: Two images of the same scene and two homol ogous epipolar lines
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Figure 2.3: 1-D image functions along their homologous epipolar lines
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Figure 2.4: Local maxima of the continuous Gaussian wavelet transform

2.3 Discrete dyadic wavelet functions

For the specia class of wavelet functions, the redundant information of the continuous wavelet
transform can be cleared by discretizing both the scale factor s and the translation (u, v). Strictly
speaking, we will work in a dyadic wavelet space



s=— and 0=k v=lI),wherej, k 10Z, (2.3

2J
and where Z denotes the set of integers. The crrespondng set of the dyadic wavelet functions and
the scale functions is
W, (X) =-/sW(sx-k), (2.4)
wheremis actually the function gfandk, as follows:
m=2+k,k=0,1, .., 2 ' -1forj=0,1, .., n
Now the coefficients of the wavelet function can be computed according to the formula

Co = (100,00 () =2 [ FOQW(2 x=k)dx, (25)

Where<EIj denotes the scalar product. The corresponding inverse wavelet transform is

00

f0)=3 calhn(). (2.6)

m=

The signification T denates the complex conjugate. Here, a continuous function is being represented
by a single infinite sequence, as with a Fourier series representation. We have here, as well, the
basis of the discrete wavelet transform if we use discrete versions ¢2Eyand (2.6)

If we use the scde function @(x) instead df the wavelet function Y(x), we get formulas for

dyadic scale functions, and we will work in a scale space.

2.4 Multidimensional analysis of the image function f(x, y)

By multidimensional analysis of the function f(x, y) we understand a sequence of closed scde
subspaces V,, 0 V1 O ... V10 Vo. Weintroduce an approximation operator A;, then A f will be
an approximation d f onthe jth level of resolution, A represents the identity, A;f O V; hdds. The
scde s on the jth level of approximation is s:Z—l,.. Pradicdly, we use limited number of

levels | = 0,1, ...n, where the nth level will be the marsest resolution with the smallest scde
s= . Next we introdwe adifferential operator Dj. The term D;f will denote the difference
between two approximatiogf andA;—1 f on thejth and thej(- 1)th levels of resolution, i.e.,

Dif=Aaf-Af for j=1,2,..n (2.7)
Mallat first proved that for 2-D multiresolution analysis, there ae three @mporents for the
difference between approximatioAd andA; f

Djf= Aaf-Af=D;.f+ Dj,f + Djsf. (2.8)
So the multiresolution analysis of the functi¢x y) can be written as

f(X,y) =Af+Dy1f+ Dyof + Dy sf

=Af+ D2’1f + Dg'zf + D2’3f + Dl,lf + D]_'zf + D1’3f

=A f +Z[Dj,1+Dj,z+Dj,s]- (2.9
J:

Eadh approximation A; f(x, y) and dfference D;,f(X, y) can be fully charaderized with a 2-D scde
function®(x, y) and its associated wavelet functid¥s, y), p =1, 2, 3,
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A f(xy) = Z Zaj,k,lq)j,k,l (xy), D;,f(xy)= Z zdj,k,l,p‘l’j,k,l (X y), (210
K

k=—co |=—c0 =—c0 |=-00

where

iq)(ka’yf| x—_k1y—_l
2! 2! 2 2! 2

a1, :<f(X' Y)'(I)j,m (X, Y)>1 dj,k,l,p :<f(X, y)!‘Pj,k,I,p(Xi y)> (212

Suppcse that the wordinates x andy are not correlated, and the 2-D scde function d(x, y) and 2D
wavelet functions$P(x, y), p =1, 2, 3 are separable. Than we can write

(X, y) = @X)AY),

Y% y) =@)u(y),  ¥o(%y) =w(X)ay), ¥i(xy) =wX)uw(y), (213

where ¢(X) is a 1-D scde function and ¢/(x) is a 1-D wavelet function. Apparently, W1, W, W3
extrad the detail s of 2-D image function f(x, y) in the x-axis, y-axis and in the diagonal diredions,
respectively.

This representation is cdl ed the wavelet pyramid o 2-D image function. Given a discrete image
f(x, y) with alimited suppat x,y =1, 2, ..., 2, the a¢ua procedure for constructing this pyramid
involves computing the wefficients a;,, and d which can be grouped into four matrices A,

Dj,p, P=1,2,3, on each levgl
A =), D,,=(a,,,,) for kl=12..,2"" (2.14)

Since we work in a discrete space we need discrete versions h and g of the functions ¢(x) and
Y(x). The ooefficients a;,, and d,,, then can be omputed via an iterative procedure. Figure 2.5

illustrates the process of the wavelet analysis. By crossng between levels j-1 and j, we first
convdve the rows of the image gproximation A f(x, y) with the discrete scae function h(x) and
the wavelet function g(x). Then we discard the odd-numbered columns (dencted by 1). We get the
approximation and the difference of given function in the x-axis diredion. We repea the whaoe
processfor all columns. The gproximation A f(x, y) and three difference mmporents D;f(x, V),
p=1, 2, 3 form the result.

@, k,I(x,y) =

) ‘I’j,k,l,p(x,y)zzlj‘l’p( ), I,klOZ (211)
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Figure2.5: Wavelet pyramid and process of wavelet analysis between two jevéland



3. Similarity distance measuring

Using wavelet analysis we can define a similarity distance S(x, y),(x',y')) for any pair of image
points on the reference image f(x, y) and the matched image f'(x',y') on any given level.

3.1 Point-to-point similarity distance

If we consider single point to point match on the jth level, the similarity distance can be defined
using only three differential components D;, f(x, y), p= 1, 2, 3. For image matching to be invariant
to the local image intensity, we use a normalization. This leads to the following implicit feature
vector

Dj,p(X7 y)
A (%)
where | [Jdenotes L , norm. Then we can define a normalized similarity distance as

B, (% V). (X,¥) =[B, (x,y) =B} (X)) . (32

Note that in the above formulation, the position (X, y) refers to the continuous 2-D space, so we will
need another definition which will by explained in the next chapter.

B;(xy) =[B,(xy) Bj.(xy) Bjs(xy)], where B, = , P=123, (31)

3.2 Local parallax continuity and generic pattern matching
For the robustness of image matching, we suppose local parallax continuity in a neighbourhood of
two integer positions (k, I) and (k’,I"), in another worlds, the parallax field in a neighbourhood of

that two points will be nearly the same.
Let N denote the minimal neighbourhood of a given point containing the central position and
four closest diagonal positions. We have

N ={(0,0),(0.5,0.5),(-0.5,0.5),(0.5,-0.5),(-0.5,-0.5)} . (3.3)

Let PAj(k, I) and PDj(k, I) denote the approximation and difference pattern vector on an integer-
indexed positions

PA, (k,1) =[A (k+r,1 +c)| (r,c)ON], (3.9

PD, (k1) =[B, (k+r,l +c)|(r,c) ON]. (3.5)

Note that locations (k +r,l +c¢) for (r,c) JN —{(0,0)} correspond to diagonal positions which can

also be computed with rigorous bottom-up wavelet transform. Similarly, a normal position (k, 1) on
the reference image may be matched to a normal position (k',I") or diagonal position (k' +r,lI" +c)

on the compared image. In order to use the generalized similarity distance S, ((k,!),(k',l")), we

need to compute two wavelet pyramids for each image f(X, y): a standard one on normal integer
positions (k, I) and another one on diagonal positions (k +r,l +c¢).

The generalized similarity distance S, ((k,1),(k’,1")) is defined as
S; ((k,1), (K, 1) = A ((k, 1), (K, 1)) TSD ((k, 1), (K1), (3.6)

where SA, ((k,1),(k’,1") and SD;((k,1),(k’,I")) are the similarity distances expressed in terms of
approximation and difference on the jth level of analysis



T

PA (k1) OPA j(k',1")

A, (k,1), (K1) =1~

PA (k1) ’ 37

PA' (K1)

D, (k. 1), (k') = |PD (k1) = PD (K", 1) (3.8)

The term (3.7) is a multidimensional coefficient of the correlation. Using generalized similarity
distance, we use full image information available on the jth level.

4. Matching two images

In this chapter, we deal with a problem of finding full correspondence between two given images.
First, we get knowledge of finding the corresponding point if we know an approximate estimation
of its position. Next, we find approximate estimation using spiral and hierarchical propagation.

4.1 Finding exact position in estimated neighbour hood

For any image point (k, I) in the reference image, its approximate correspondence (kg,l,) in the
matched image may be obtained through some general strategies, such as a spiral and hierarchical
propagation to be explained later on. The simplest way to catch the precise correspondence (k',1") is

the discrete search in asmall neighbourhood of (kg,l,) which is defined by a distance threshold T..
milq S ((k,1), (k17 O(k',1 :\(k’,l’) = (ko 1) < T, . (4.2

The distance threshold T, should be defined in such a way that the allowed errors in the parallax
field can be corrected. Typically, thethresholdis1< T, < 2.

4.2 Spiral and hierarchical propagation

Without loss of generdlity, we only consider images with size 2" x 2". By symbol M; we denote the
discrete parallax field on the jth level of the wavelet pyramid

MJ' =(M i(kil))k,lzo,l m-11 where m=2"". (4.2)

Each element of the pardlax field M (k,l) contains the vector for a pair of homologous points
(k,1) and (k',1"

M (kD=1 =(k,1I). 4.3
If thereis no correspondence then M ; (k,1)= 0.

With at least 60% of overlapping, the central area on a chosen highest level should have
correspondence on the other image. For example, if we start with searching on the level j =n-3

with size 8 x 8, the central area of size 2 x 2 on the reference image should have correspondence on
the matched image. So we can start searching for correspondence with the best matching of the
central area using the generalized similarity distance defined in Chapter 3.2 in Eq. (3.6). Known
paralax vectors can then be propagated from the central area to the outer rings. In each ring, we
accurate the parallax vector with process described in the previous chapter in Eqg. (4.1). This
propagation is called a spiral propagation.

Gross errors of the resultant parallax field can be detected and corrected automatically by using
the local parallax continuity constraint

IM . (k)-M (k1) IET,, (4.4)



where M j(k,l) denotes the mean paralax field vector in the smallest nighbourhood of central
position (k, I). The constant Ty, denotes the maximal allowed parallax difference, usualy 1< Ty < 2.

After image matching on the higher (j + 1)th level, the parallax field should then be propagated
to the next lower jth level. This propagation is called a hierarchical propagation. We again accurate
the parallax vectors with process described in the previous chapter in Eq. (4.1), we search for the
precise correspondence in the smallest neighbourhood of the approximate estimation of the
correspondence.

5. Used wavelet functions

All used wavelet and its associated scale functions are shown in Fig. 5.1. The discrete wavelet
function g and its associated scale function h are mutually, therefore, we can easily compute the
coefficients of the wavelet function g from the coefficients of the scale function h

g, = ()" hu. (5.1)
On this account, | will write only the coeficients of the scale function.

Haar wavelets
Haar wavelets are the oldest wavelets. They are known to have the most compact support of 2, and
they are orthogonal. The scale function his

h(Haar) = (%, %). (5.2

Daubechie wavelets (Daub-4)
Daubechie wavelets are orthogonal with compact support of 4. They are constructed to have the
maximum vanishing moments. The vanishing moments of |-order are defined as

}x' P(x)dx=0. (5.3)

The scale function for Daub-4 is

1+8@ | 3+8ﬁ 13—8@ ’1—8ﬁ Y (5.4)

Unfortunately, these wavelet functions are far from symmetric. Daubechie wavelets with the
compact support length L > 4, denoted by Daub-L, also exist.

L east asymmetric Daubeshies wavelets (Symmlet-8)
They are constructed in the same way as Daubechie wavelets, but they are at least asymmetric. The
scale functionis

h(Symmlet-8) = (-0.05357445070, -0.02095548256, 0.35186953432, 0.56832912170,

0.21061726710, -0.07015881208, -0.00891235072, 0.02278517294). (5.5)

Meyer Wavelets
They are orthogona and symmetric, but they have no compact support. Nevertheless, for
computing, the discrete version of Meyer wavelets exist. They have compact support of 62.

Symmetric complex Daubechies wavelets (Scd-4, Scd-6)

It can be shown that only complex valued scale and wavelet functions exist under the four hard
conditions for orthogonality, compact support, maximum vanishing moments and finally symmetry.
We denote Scd-6 the wavelet function with the shortest support of 6. It satisfies all these conditions,
and it is associated with Daub-6 wavelet function. The scale function corresponding to Scd-6 is

h(Daub-4) = (




h(Scd-6)= 614(—3—iJE, 5-i./15, 30+i2./15, 30+i2./15, 5-i/15, -3-i/15).  (5.6)

We dready know that the Daubedie wavelet of length 4 exists. We can buld the asociated Scd-4
complex wavelet function, bu it is highly nonsmocth (see Fig. 5.1). The vanishing moments
doesn't exist for this wavelet. The corresponding scale function is

h(Scd-4)= Z(1+| y =i, 10, 1+i0). (5.7)
Haar wavelet f Haar scale f. SCO-4 wavelet f SCO-4 scale f.
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Figure5.1: Tested wavelet and scale functions

6. Experiments

For my experiments, | chose a omplex scene. | took two images of a dericd table with a digita
camerafrom two dfferent positions (seeFig. 2.2 or 6.3). | then used the &owve explained algorithm,
and | experimented with different wavelet functions.

6.1 Relativegrosserror

Firstly, | measured the aror of bad parallax field determination with resped to the dhosen wavelet
function. I measured the difference Vj(k, I) between the parallax vedor Mj(k, I) for a given pasition
(k, 1) with the mean parallax vectdd ; (k, I) in the closest 83 neighbourhood

Vi(k, 1) =Mk 1) = M ; (& 1) (6.1)

Errors of the parallax vedor Mj(k, 1) satisfying the constraint [Vj(k, )] < Lw (usually 1< Ly < 2)
can be oorreded in a natural way. Nevertheless the arors for which the expresson |Vj(k, |)| = Lu
hods are grosserrors, and for such errors | provided a aiterion | used for comparing the wavel et
functions. The criterion afelative gross error RGE is

RGE = (number of errors fo, (k,1)

> L,, )/ (all matched points) (6.2



The results are summarized in Table 6.1. The best was the complex wavelet function Scd-4. The
second one Scd-6 is better than all other real wavelet functions. From the set of real wavelets, the
Meyer wavelet function is the best.

Wavelet RGE(Ms) [RGE(MJ) RGE(M5)
Haar 0.05 0.133333 0.2531

Doub-4 0 0.1 0.24866
Symmlet-8 0.1 0.125 0.28496
Meyer 0.05 0.09167 0.23656
Scd-4 0 0.05 0.16578
Scd-6 0 0.06666 0.17972

Table 6.1: Relative gross errors (RGE) on levels 5,4 and 3

6.2 Relativegrosserror RGE compared to value Ly

In the second test, | plotted the amount of relative gross error RGE for different values of Ly into the

chart (see Fig. 6.1 and 6.2).
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Figure 6.2: Relative gross error in comparison with the value Ly, on 3th level of wavelet pyramid




This result shows us how large error is made by a given wavelet function. The faster the wavel et
function falls the more suitable is for our use. Again, both the complex wavelet functions Scd-4 and
Scd-6 are the best. From the set of the real wavelets, the Meyer wavelet function and the function
Symmlet-8 are better than all others.

6.3 Theresultant parallax field

As a last result, | depict resultant parallax field for the best wavelet function, which was the
complex wavelet function Scd-4. In the figures, the parallax fields on different levels of a wavelet
pyramid are depicted by making use of amesh. | started finding the correspondence on the 5th level
of the wavelet pyramid with the approximation of size 8 x 8. The result of searching on this level
can be seen in Fig. 6.3. The figure on the left shows the reference image. The figure in the middle
shows the parallax field just after the initialization in the reference image. The figure on the right
shows the corrected parallax field in the reference image corrected with the discrete search in the
neigbourhood of the approximate estimation of the correspondence).

Figure 6.3: Parallax field found on the highest 5th level of size8 x 8

Crossing from the level 5 to the level 4 with size of 16 x 16 is shown in Fig. 6.4, and crossing
from the level 4 to the level 3 of size 32 x 32 is shown in Fig. 6.5. The figure in the middle shows
the parallax field initiated just after the hierarchical propagation from the level 5 to 4 and from the
level 4 to 3, respectively. The figure on the right shows the corrected parallax field.

Figure 6.4: Parallax field found on the 4th level of size 16 x 16



Figure6.5: Parallax field found on the 3rd level of size 832

| evaluated the found correspondence between the two images by a naked eye. At afirst glance,
we can seethat the mentioned algorithm works very well. There ae only few errors in the midde
areaof the parallax field. The most errors are in the border areain which the cnstraint of continuity
of the parallax field is hard to apply. Therefore, the next improvement of this agorithm shoud aid
at removing the errors in the border area.

7. Conclusion

In this work, | explained the dgorithm for matching two images taken by a digital camera. The
algorithm is based onthe usage of wavelet transform. | used several of the most important wavel et
functions for testing. The symmetric complex wavelet functions (Scd-4 and Scd-6) proved to be the
best choice From the set of red wavelets, we recmmend to use the Meyer wavelet function.
Except for the border parts, the above explained algorithm for the image matching works very well.
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