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Abstract

In this article, we deal with the problem of general matching of two images taken by a camera. To
find the correspondence between two images, we use the multi resolution wavelet analysis of the
image functions. The wavelet analysis is good at scale adaptivity and, therefore, very effective in
general image matching. We test various wavelet functions, and evaluate their reliability.

Keywords: image matching, image correspondence, wavelet analysis

1. Two images matching problem

Suppose we have some part of a real or an artificial world. This world we call a scene.
Furthermore, we suppose that objects of the scene are static. This means that they don’ t move, and
don’ t change their shapes in time. Next we have a camera which moves in the scene. In certain short
time intervals, the camera takes images of the scene.

Suppose we have two images of one scene each taken from a different position of the camera.
The image matching problem refers to a process of establishing the correspondence between each
pair of visible homologous image points on a given pair of images. Thus, we work with two two-
dimensional (2-D) discrete image functions. In order to find the correspondence, the images have to
satisfy some assumptions. Each pair of the images has no less than 50% overlapping, which is
defined as the minimum ratio between the scene surface commonly depicted in both images over the
surfaces depicted in each one of them. We require at least 60% overlapping, and the vergence angle
formed by both image planes to be less than π/2.

2. Wavelet analysis and image matching

In this chapter, we explain how wavelet decomposition of 2-D image function f(x, y) is to be used
for matching two images.

2.1 Continuous 2-D wavelet transform

A continuous 2-D wavelet transform, as a way of image decomposition, is a projection of the image
function f(x, y) onto a family of functions which are linear combinations (dilations and translations)
of a unique function ΨΨ(x, y). The function ΨΨ(x, y) is called a 2-D mother wavelet, and the
corresponding family of wavelet functions is given by

ΨΨs,u,v(x, y) = s ΨΨ(s(x - u, y - v)),      where    s, u, v ∈ R, (2.1)



and where s and (u, v) are called the scale and the translation. The 2-D wavelet transform of the
function  f(x, y) ∈ L2 is defined by
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This transform can be interpreted as a decomposition of an image function  f(x, y) such that the
frequency spectrum of the transformed function ),,( vusfTΨ  has the same bandwidth in a
logarithmic scale s. The adaptivity to scale and translation leads to its good locality in both
frequency and spatial domain. This property is suitable in our problem of general image matching.
Let the function ΨΨ be a differential operator, then the transform ),,( vusfTΨ  will be a continuous

scale-space representation of the image edges. If we use low-pass approximation operator ΦΦ instead
of high-pass differential operator ΨΨ, the transform will produce a continuous scale-space
representation of the image approximations. From now on, we shall let ΦΦ(x, y) denote 2-D scaling
function corresponding to low-pass approximation operator, and ΨΨ(x, y) the wavelet function
corresponding to high-pass differential operator. Similarly, we shall use φ(x) for 1-D scale function
and  ψ(x) for 1-D wavelet function.

Example of wavelet function and scale function is shown in Fig. 2.1. In the figures, we can also
see the amplitude spectrum of the wavelet functions and the scale functions. Notice the low-pass
characteristic of the scale function and the high-pass characteristic of the wavelet function.

Figure 2.1: Gauss wavelet function (
2

2 xxe−− ), scale function (
2xe− ) and their amplitude spectra

2.2 Continuous wavelet transform and image matching problem

From previous chapter, we already know that when using the 2-D continuous wavelet transform
),,( vusfTΨ  or the 2-D continuous scale transform ),,( vusfTΦ , we can decompose the image

function f(x,y) on different levels of resolution (depending on the scale s). On the coarsest level, we
can easily find singularities (such as edges, corners, peaks etc.). Then we can track them down from
a high level (coarse) to the lowest level (detail). In this way we can determine the whole
correspondence between two images.



To demonstrate this point I will give you an example. Figs. 2.2 - 2.4 show the maxima of
continuous Gaussian wavelet transform of two 1-D image profile functions along their homologous
epipolar lines. It can be clearly seen that from the scale 32 downwards, the maxima correspondence
can be easily tracked down. Homologous maxima have been determined by a naked eye, and are
signed by homologous numbers. We can extend the same idea to 2-D image matching.

          

Figure 2.2: Two images of the same scene and two homologous epipolar lines

Figure 2.3: 1-D image functions along their homologous epipolar lines

Figure 2.4: Local maxima of the continuous Gaussian wavelet transform

2.3 Discrete dyadic wavelet functions

For the special class of wavelet functions, the redundant information of the continuous wavelet
transform can be cleared by discretizing both the scale factor s and the translation (u, v). Strictly
speaking, we will work in a dyadic wavelet space
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1=    and   (u = k, v = l), where  j, k, l ∈ Z, (2.3)

and where Z denotes the set of integers. The corresponding set of the dyadic wavelet functions and
the scale functions is

)()( ksxsxm −ψ=ψ , (2.4)

where m is actually the function of j and k, as follows:

m = 2 j + k , k = 0, 1, …, 2 n − j −1 for j = 0, 1, …, n
Now the coefficients of the wavelet function can be computed according to the formula
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where ⋅⋅,  denotes the scalar product. The corresponding inverse wavelet transform is
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The signification ⋅  denotes the complex conjugate. Here, a continuous function is being represented
by a single infinite sequence, as with a Fourier series representation. We have here, as well , the
basis of the discrete wavelet transform if we use discrete versions of Eqs. (2.5) and  (2.6).

If we use the scale function )(xφ  instead of the wavelet function )(xψ , we get formulas for
dyadic scale functions, and we will work in a scale space.

2.4 Multidimensional analysis of the image function  f(x, y)

By multidimensional analysis of the function f(x, y) we understand a sequence of closed scale
subspaces Vn ⊂ Vn−1 ⊂ … ⊂ V1 ⊂ V0. We introduce an approximation operator Aj, then Aj f will be
an approximation of f on the jth level of resolution, A0 represents the identity, Aj f ∈ Vj holds. The
scale s on the jth level of approximation is js

2
1= . Practically, we use limited number of

levels  j = 0, 1, …n, where the nth level will be the coarsest resolution with the smallest scale

ns
2
1= . Next we introduce a differential operator Dj. The term Dj f will denote the difference

between two approximations Aj f and Aj−1 f on the jth and the (j − 1)th levels of resolution, i.e.,

Dj f = Aj−1 f − Aj f     for    j = 1, 2, …, n. (2.7)

Mallat first proved that for 2-D multi resolution analysis, there are three components for the
difference between approximations Aj f and Aj−1 f

Dj f = Aj−1 f − Aj f = Dj,1 f + Dj,2 f + Dj,3 f. (2.8)

So the multiresolution analysis of the function f(x, y) can be written as

f(x, y) = A1 f + D1,1 f + D1,2 f + D1,3 f

= A2 f + D2,1 f + D2,2 f + D2,3 f + D1,1 f + D1,2 f + D1,3 f

…
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Each approximation Aj f(x, y) and difference Dj,p f(x, y) can be fully characterized with a 2-D scale
function ΦΦ(x, y)  and its associated wavelet functions ΨΨ(x, y), p = 1, 2, 3,
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Suppose that the coordinates x and y are not correlated, and the 2-D scale function ΦΦ(x, y) and   2-D
wavelet functions ΨΨ(x, y), p = 1, 2, 3 are separable. Than we can write

),()(),( yxyx φφ=-
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where φ(x) is a 1-D scale function and ψ(x) is a 1-D wavelet function. Apparently, ΨΨ1, ΨΨ2, ΨΨ3

extract the details of 2-D image function  f(x, y) in the x-axis, y-axis and in the diagonal directions,
respectively.

This representation is called the wavelet pyramid of 2-D image function. Given a discrete image
f(x, y) with a limited support x, y = 1, 2, …, 2n, the actual procedure for constructing this pyramid
involves computing the coeff icients lkja ,,  and plkjd ,,,  which can be grouped into four matrices Aj,

Dj, p, p = 1, 2, 3, on each level j

)( ,, lkjj aA = ,        )( ,,,, plkjpj aD =      for      =lk, 1, 2, …, 2 n − j. (2.14)

Since we work in a discrete space, we need discrete versions h and g of the functions φ(x) and
ψ(x). The coeff icients lkja ,,  and plkjd ,,, then can be computed via an iterative procedure. Figure 2.5

ill ustrates the process of the wavelet analysis. By crossing between levels j−1 and j, we first
convolve the rows of the image approximation Aj−1 f(x, y) with the discrete scale function h(x) and
the wavelet function g(x). Then we discard the odd-numbered columns (denoted by ↓). We get the
approximation and the difference of given function in the x-axis direction. We repeat the whole
process for all columns. The approximation Aj f(x, y) and three difference components Dj,p f(x, y),
p = 1, 2, 3 form the result.

Figure 2.5: Wavelet pyramid and process of wavelet analysis between two levels j − 1 and  j



3. Similarity distance measuring

Using wavelet analysis we can define a similarity distance S((x, y),( yx ′′, )) for any pair of image
points on the reference image f(x, y) and the matched image ),( yxf ′′′  on any given level.

3.1 Point-to-point similarity distance

If we consider single point to point match on the jth level, the similarity distance can be defined
using only three differential components Dj,p f(x, y), p = 1, 2, 3. For image matching to be invariant
to the local image intensity, we use a normalization. This leads to the following implicit feature
vector
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where || ⋅ denotes L2 norm. Then we can define a normalized similarity distance as

),(),()),(),,(( yxyxyxyxSB jjj ′′′−=′′ BB . (3.2)

Note that in the above formulation, the position (x, y) refers to the continuous 2-D space, so we will
need another definition which will by explained in the next chapter.

3.2 Local parallax continuity and generic pattern matching

For the robustness of image matching, we suppose local parallax continuity in a neighbourhood of
two integer positions (k, l) and ),( lk ′′ , in another worlds, the parallax field in a neighbourhood of
that two points will be nearly the same.

Let N denote the minimal neighbourhood of a given point containing the central position and
four closest diagonal positions. We have

)}5.0,5.0(),5.0,5.0(),5.0,5.0(),5.0,5.0(),0,0{( −−−−=N . (3.3)

Let PAj(k, l) and PDj(k, l) denote the approximation and difference pattern vector on an integer-
indexed positions

]),(|),([),( NcrclrkAlk jj ∈++=PA , (3.4)

]),(|),([),( Ncrclrklk jj ∈++= BPD . (3.5)

Note that locations ),( clrk ++  for )}0,0{(),( −∈ Ncr  correspond to diagonal positions which can
also be computed with rigorous bottom-up wavelet transform. Similarly, a normal position (k, l) on
the reference image may be matched to a normal position ),( lk ′′  or diagonal position ),( clrk +′+′
on the compared image. In order to use the generalized similarity distance )),(),,(( lklkS j ′′ , we

need to compute two wavelet pyramids for each image f(x, y): a standard one on normal integer
positions (k, l) and another one on diagonal positions ),( clrk ++ .

The generalized similarity distance )),(),,(( lklkS j ′′ is defined as

)),(),,(()),(),,(()),(),,(( lklkSDlklkSAlklkS jjj ′′∗′′=′′ , (3.6)

where )),(),,(( lklkSA j ′′  and )),(),,(( lklkSD j ′′  are the similarity distances expressed in terms of

approximation and difference on the jth level of analysis
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The term (3.7) is a multidimensional coefficient of  the correlation. Using generalized similarity
distance, we use full image information available on the jth level.

4. Matching two images

In this chapter, we deal with a problem of finding full correspondence between two given images.
First, we get knowledge of finding the corresponding point if we know an approximate estimation
of its position. Next, we find approximate estimation using spiral and hierarchical propagation.

4.1 Finding exact position in estimated neighbourhood

For any image point (k, l) in the reference image, its approximate correspondence ),( 00 lk ′′  in the

matched image may be obtained through some general strategies, such as a spiral and hierarchical
propagation to be explained later on. The simplest way to catch the precise correspondence ),( lk ′′  is

the discrete search in a small neighbourhood of ),( 00 lk ′′  which is defined by a distance threshold Tr.
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The distance threshold Tr should be defined in such a way that the allowed errors in the parallax
field can be corrected. Typically, the threshold is 1 ≤ Tr ≤ 2.

4.2 Spiral and hierarchical propagation

Without loss of generality, we only consider images with size 2n ×  2n. By symbol Mj we denote the
discrete parallax field on the jth level of the wavelet pyramid

jn
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Each element of the parallax field ),( lkjM  contains the vector for a pair of homologous points

),( lk  and ),( lk ′′

),( lkjM = ),( lk ′′ − ),( lk . (4.3)

If there is no correspondence then ),( lkjM = 0/ .

With at least 60% of overlapping, the central area on a chosen highest level should have
correspondence on the other image. For example, if we start with searching on the level 3−= nj
with size 8 ×  8, the central area of size 2 ×  2 on the reference image should have correspondence on
the matched image. So we can start searching for correspondence with the best matching of the
central area using the generalized similarity distance defined in Chapter 3.2 in Eq. (3.6). Known
parallax vectors can then be propagated from the central area to the outer rings. In each ring, we
accurate the parallax vector with process described in the previous chapter in Eq. (4.1). This
propagation is called a spiral propagation.

Gross errors of the resultant parallax field can be detected and corrected automatically by using
the local parallax continuity constraint

Mjj Tlklk ≤− |),(),(| MM , (4.4)



where ),( lkjM denotes the mean parallax field vector in the smallest nighbourhood of central

position (k, l). The constant TM denotes the maximal allowed parallax difference, usually 1 ≤ TM ≤ 2.
After image matching on the higher (j + 1)th level, the parallax field should then be propagated

to the next lower jth level. This propagation is called a hierarchical propagation. We again accurate
the parallax vectors with process described in the previous chapter in Eq. (4.1), we search for the
precise correspondence in the smallest neighbourhood of the approximate estimation of the
correspondence.

5. Used wavelet functions

All used wavelet and its associated scale functions are shown in Fig. 5.1. The discrete wavelet
function g and its associated scale function h are mutually, therefore, we can easily compute the
coefficients of the wavelet function g from the coefficients of the scale function h

k
k

k hg −
+−= 1

1)1( . (5.1)

On this account,  I will write only the coeficients of the scale function.

Haar wavelets
Haar wavelets are the oldest wavelets. They are known to have the most compact support of 2, and
they are orthogonal. The scale function h is

h(Haar) = ( 2
1 , 2

1 ). (5.2)

Daubechie wavelets (Daub-4)
Daubechie wavelets are orthogonal with compact support of 4. They are constructed to have the
maximum vanishing moments. The vanishing moments of l-order are defined as
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 The scale function for Daub-4 is

h(Daub-4) = (
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Unfortunately, these wavelet functions are far from symmetric. Daubechie wavelets with the
compact support length L > 4, denoted by Daub-L, also exist.

Least asymmetric Daubeshies wavelets (Symmlet-8)
They are constructed in the same way as Daubechie wavelets, but they are at least  asymmetric. The
scale function is

h(Symmlet-8) = (-0.05357445070, -0.02095548256, 0.35186953432, 0.56832912170,

0.21061726710, -0.07015881208, -0.00891235072, 0.02278517294). (5.5)

Meyer Wavelets
They are orthogonal and symmetric, but they have no compact support. Nevertheless, for
computing, the discrete version of Meyer wavelets exist. They have compact support of 62.

Symmetric complex Daubechies wavelets (Scd-4, Scd-6)
It can be shown that only complex valued scale and wavelet functions exist under the four hard
conditions for orthogonality, compact support, maximum vanishing moments and finally symmetry.
We denote Scd-6 the wavelet function with the shortest support of 6. It satisfies all these conditions,
and it is associated with Daub-6 wavelet function. The scale function corresponding to Scd-6 is



h(Scd-6) = 
64

1
( 153 i−− , 155 i− , 15230 i+ , 15230 i+ , 155 i− , 153 i−− ). (5.6)

We already know that the Daubechie wavelet of length 4 exists. We can build the associated Scd-4
complex wavelet function, but it is highly non-smooth (see. Fig. 5.1). The vanishing moments
doesn’t exist for this wavelet. The corresponding scale function is

h(Scd-4) = 
4

1
( i+1 , i−1 , i−1 , i+1 ). (5.7)

Figure 5.1: Tested wavelet and scale functions

6. Experiments

For my experiments, I chose a complex scene. I took two images of a clerical table with a digital
camera from two different positions (see Fig. 2.2 or 6.3). I then used the above explained algorithm,
and I experimented with different wavelet functions.

6.1 Relative gross error

Firstly, I measured the error of bad parallax field determination with respect to the chosen wavelet
function. I measured the difference Vj(k, l) between the parallax vector Mj(k, l) for a given position

(k, l) with the mean parallax vector jM (k, l) in the closest 3×3 neighbourhood

Vj(k, l) = Mj(k, l) − jM (k, l). (6.1)

Errors of the parallax vector Mj(k, l) satisfying the constraint |Vj(k, l)| < LM (usually 1 ≤ LM ≤ 2.)
can be corrected in a natural way. Nevertheless, the errors for which the expression |Vj(k, l)| ≥ LM

holds are gross errors, and for such errors I provided a criterion I used for comparing the wavelet
functions. The criterion of relative gross error RGE is

RGE = (number of errors for Mj Llk ≥),(V ) / (all matched points) (6.2)



The results are summarized in Table 6.1. The best was the complex wavelet function Scd-4. The
second one Scd-6 is better than all other real wavelet functions. From the set of real wavelets, the
Meyer wavelet function is the best.

Wavelet RGE(M5) RGE(M4) RGE(M3)
Haar 0.05 0.133333 0.2531
Doub-4 0 0.1 0.24866
Symmlet-8 0.1 0.125 0.28496
Meyer 0.05 0.09167 0.23656
Scd-4 0 0.05 0.16578
Scd-6 0 0.06666 0.17972

Table 6.1: Relative gross errors (RGE) on levels 5, 4 and 3

6.2 Relative gross error RGE compared to value LM

In the second test, I plotted the amount of relative gross error RGE for different values of LM into the
chart (see Fig. 6.1 and 6.2).

�

��� �

��� �

��� �

��� �

��� �

��� �

��� 	

��� 


� ��� � ��� � ��� � ��� 
 �
� 


�� �

�������
�����������
����� �"! #�$ �%

&'#���#(�
�*)�+����
�*)�+����

Figure 6.1: Relative gross error in comparison with the value LM on 4th level of wavelet pyramid
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Figure 6.2: Relative gross error in comparison with the value LM on 3th level of wavelet pyramid



This result shows us how large error is made by a given wavelet function. The faster the wavelet
function falls the more suitable is for our use. Again, both the complex wavelet functions Scd-4 and
Scd-6 are the best. From the set of the real wavelets, the Meyer wavelet function and the function
Symmlet-8 are better than all others.

6.3 The resultant parallax field

As a last result, I depict resultant parallax field for the best wavelet function, which was the
complex wavelet function Scd-4. In the figures, the parallax fields on different levels of a wavelet
pyramid are depicted by making use of a mesh. I started finding the correspondence on the 5th level
of the wavelet pyramid with the approximation of size 8 ×  8. The result of searching on this level
can be seen in Fig. 6.3. The figure on the left shows the reference image. The figure in the middle
shows the parallax field just after the initialization in the reference image. The figure on the right
shows the corrected parallax field in the reference image corrected with the discrete search in the
neigbourhood of the approximate estimation of the correspondence).

Figure 6.3: Parallax field found on the highest 5th level of size 8 ×  8

Crossing from the level 5 to the level 4 with size of 16 ×  16 is shown in Fig. 6.4, and crossing
from the level 4 to the level 3 of size 32 ×  32 is shown in Fig. 6.5. The figure in the middle shows
the parallax field initiated just after the hierarchical propagation from the level 5 to 4 and from the
level 4 to 3, respectively. The figure on the right shows the corrected parallax field.

Figure 6.4: Parallax field found on the 4th level of size 16 ×  16



Figure 6.5: Parallax field found on the 3rd level of size 32 ×  32

I evaluated the found correspondence between the two images by a naked eye. At a first glance,
we can see that the mentioned algorithm works very well . There are only few errors in the middle
area of the parallax field. The most errors are in the border area in which the constraint of continuity
of the parallax field is hard to apply. Therefore, the next improvement of this algorithm should aid
at removing the errors in the border area.

7. Conclusion

In this work, I explained the algorithm for matching two images taken by a digital camera. The
algorithm is based on the usage of wavelet transform. I used several of the most important wavelet
functions for testing. The symmetric complex wavelet functions (Scd-4 and Scd-6) proved to be the
best choice. From the set of real wavelets, we recommend to use the Meyer wavelet function.
Except for the border parts, the above explained algorithm for the image matching works very well.
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