Ray tracing with BSP and Rope trees

Jaroslav Kfivanek, Vojtéch Bubnik
e-mail: {xkrivanj, xbubnik }@cs.felk.cvut.cz

Departement of Computer Science and Engineering
Czech Technical University, Faculty of Electrical Engineering
Prague, Czech Republic

Abstract

In this paper, we present a method for finding the nearest ray-object intersection.
Our method uses binary space subdivision. To accelerate the tree traversal
time, we use the technique called rope trees. A comparision of results between
traversing BSP tree with and without rope trees is included at the end of this paper.

KEYWORDS: ray tracing, spatial data structures, ropes, rope trees, spa-
tial subdivision, BSP tree.

1 Introduction

Ray tracing is a widely used rendering technique for producing realistic images
that simulate specular surfaces. It requires testing of many rays to determine in-
tersection with objects. A way of reducing the computational cost of ray tracing
is to minimize the occurence of one basic operation, the ray—object intersection
test. The simplest method of determining the ray—scene intersection is to test the
ray against each object and to remember which object has the nearest point of
intersection. This is extremely slow and can be greatly improved with the use if
scene structuring.

2 Scene Structuring

For nearly all object of the scene, an intersection test is a nontrivial computation.
To speed up the intersection test, a bounding box is placed around the object. If the
ray doesn’t intersect the bounding volume, it doesn’t intersect the object inside.
Otherwise, the ray—object intersection must be computed in usual manner. This
is the simplest case of scene structuring, but it can be generalized with the idea of
hierarchical data structure.

There are two main classes of hierarchies used to order the scene. Object subdivi-
ston clusters the objects, recording the space that each object inhabits (hierarchical
extent tree, [3] [5]). Space subdivision subdivides space, recording the objects that
intersect each region ([2] [4] [8] [1]).

2.1 Binary Space Partitioning Tree

The binary space partitioning (BSP) tree [2] [4] is a common type of space subdi-
vision. Initially, the BSP consists of one node, representing the bounding volume
containing all objects of the scene. This volume is divided using a splitting planes
perpendicular to one of the major axes. Fach leaf of the BSP contains references to
all objects that intersect it. The division continues until the given minimal number
of objects per leaf is reached or the depth of the BSP reaches the given maximal
value.

D
GO D
&P O

Figure 1: Space subdivision (left) and the corresponding BSP tree (right).

An important factor influencing the resulting properties of a BSP tree is the
criterion for positioning the splitting planes. It was studied by Kaplan [4] and
MacDonald and Booth [6]. Kaplan simply placed the splitting planes in the center
of the parent volume.

Better way is to position the splitting plane so that the probability of intersec-
tion of arbitrary ray with an object in the two new leaves is roughly the same. In
[6] a simple heuristics for finding the optimal position of splitting plane is used.
This technique is also described in [8].

A ray—traversal algorithm works recursively. If the ray hits a node of the BSP
tree and the node is not a leaf, it is tested against the splitting plane of the
current node. If the ray is not cut by the plane within the node’s box, the traversal
algorithm continues in the appropriate child of the current node with the same
ray. Otherwise, the ray is cut by the plane and the traversal continues in both
children with the modified ray.

If the node is a leaf and the intersection with an object is not found the algo-
rithm returns to the first node, in which the ray was divided in two. If no such
node exists, the ray doesn’t intersect the scene at all.

3 Rope Trees for BSP Tree

In this section we present the concept of ropes and rope trees for BSP tree. We
adopted the technique from [6] and [8]. We describe rope trees construction and
ray—traversal algorithm using these data structures.

3.1 Motivation

The resursive ray—traversal for all types of rays (primary, secondary, shadow) al-
ways starts from the root node of the tree and continues downwards. It proceeds
identifying pierced nodes until it hits an object. In most cases a ray intersecs an
object very close to it’s origin and thus the down—traversal from the root can form
a large portion of the whole traversal time.

To gain from a coherence between the primary and the secondary rays, it
would be good to eliminate the down—traversal for secondary rays. We can do
this by remembering the cell pointer of the BSP tree in which the last ray—object
intersection occured. For the secondary and shadow rays, we can eliminate the
down—traversal of the whole tree. But with the current structure of the BSP tree,
we are not able to make any upward steps. This leads to ropes.

3.2 Ropes

Each leaf in the BSP tree corresponds to the axis—aligned leaf—cell. Each such
leaf cell has six faces (the leaf-faces). There are two mutual relations for a given
leaf-face and its neighour leaf—cells:

1. A leaf-face is contained in the neigbour leaf—cell completely. In this case,there
is only one neighbour corresponding to a given leaf—face.

2. A leaf-face has an intersection with more leaf—cells. It means that there are
more neighbours corresponding to a given leaf—face.

On figure 1, the first case is the relation between the bottom face of the leaf 1 and
the cell 3 (cell 1 has only one neighbour — cell 3). The second case is the relation
between the top face of the leaf cell 3 and the cells 1 and 2.

For a given face we call a neighbour—node a node, which is the smallest common
ancestor of all its neighbours. A rope is a link from a leaf-face to its neighbour—
node.

With ropes, we can solve the problem of back—tracking in the BSP tree — we
don’t need it anymore.

3.3 Rope construction Algorithm

The construction of ropes is very simple. For a given face and leaf, the BSP tree
is searched starting from the root node. The traversal continues until we found a

G) @ ******* > Right face of the leaf 3

""""""" > Top face of theleaf 3

Figure 2: Space subdivision and the corresponding BSP tree with ropes for the leaf
3. One of them is an indirect rope (points to the parent of leaves 1 and 2).

node whose splitting plane intersects the leaf-face for which we construct the rope.
The rope points to this node. In each step of the traversal, we follow only the child
that corresponds to our leaf-face.

3.4 Rope Trees

Ropes point either to leaves or to interior nodes of the BSP tree. We call a rope
that points to an interior node of the BSP tree an indirect rope. Every indirect
rope can be replaced by the rope tree.

The rope trees are additional data structures exploited for the neighbour—leaf
identification, leading to a faster ray—traversal algorithm.

The drawback of indirect ropes is, that the BSP subtree pointed to by the
rope is a three—dimensional data structure. Therefore the splitting planes in the
neighbour—-node, that are parallel to the face where a ray exits the current leaf cell
have to be traversed downwards. This is inefficient, because for a given leaf—cell
we actually search for a neghbour—leaf on the leafface, which is a two dimensional
searching problem. A rope tree is a pruned copy of the BSP subtree that the
indirect rope points to.

The algorithm for building rope tree replaces the indirect ropes with the corre-
sponding rope trees. Starting from the node the indirect rope points to, we perform
the depth—first—search (DFS) on the BSP tree. Only the subtrees corresponding to
the cells intersecting the face are visited during the DFS. Only the nodes whose
faces intersect a given leaf-face are added to the rope tree.

In each step of the DFS, the possible cases are:

e The splitting plane of the visited node is parallel to the current leaf-face.

In this case, we follow only the child, which corresponds to our leaf-face.

e The splitting plane of the visited node is perpendicular to the current leaf-
face.

— The splitting plane doesn’t intersect our leaf-face.

In this case, we follow only the child, which corresponds to our leaf-face.

— The splitting plane intersects our leaf—face.

In this case, we copy the node to the rope tree and we must follow both
chidren.

G) @ ******* > Right face of the leaf 3

""""""" > Top face of theleaf 3

Figure 3: Space subdivision and the corresponding BSP tree with rope trees for
the leaf 3. In this simple case, the rope tree is only a copy of the BSP subtree.

3.5 Traversal Algorithm

In order to exploit rope trees during ray—casting the traversal algorithm for the

BSP has to be modified.

Assume the ray—traversal starts in certain leaf—cell. Supposing the ray is not
terminated here, we require to locate the next leaf-cell pierced by the ray. First
we determine the exit—face of the leaf-cell, that is intersected by the ray in its
positive direction. Then we have to compute the exit—point on the exit face. We
follow the rope tree corresponding to the exit face. To traverse the rope tree, we
have to compare the position of the splitting plane with the exit—point of the
current leaf-cell and follow the appropriate child.

4 Implementation

We incorporated the rope trees into the ART rendering package, which is a “col-
lection of Objective-C libraries that provide a wide range of functionality suitable
for graphics applications” (see [7]).

The implementation of BSP trees was made by Robert F. Tobler and it is quite
interessant. Each inner node of the BSP tree contains the position of the splitting
plane, two pointers to the children and also the direction of the splitting planes of
the children. The interesting thing is, that the direction of the splitting plane is
stored in the parent of the node, not in the node itself. This allows faster traversal of
the BSP tree, since for each direction of the splitting plane, the code for traversing
the node is slightly different. The code for each direction of the splitting plane is
stored in one procedure. Since the direction is stored in the parent, it knows which
of these proccedures to call (the pointers to these procedures is stored in an array
which is indexed by the direction of the splitting plane).

This brought additional memory requirements to the imlementation of ropes,
because for each rope, we have to store also the direction of the splitting plane of
the node the rope points to. For large scenes, this is quite significant.

5 Experimental Results

In this section we present and discuss the effeciency of our implementation of rope
trees.

As testing scenes, we used the ones included in the ART package and also a
scene composed of randomly generated triangles. All BSP trees were constructed
with maximal depht 20 and the number of primitives for a node to become a
leaf was 4. The measurements were conducted on AMD K6-11 PC, 333 MHz, 96
MBytes RAM in the Linux operating system. The results are given in Table 2.
Table 1 describes the meaning of the measured variables.

Np | Number of polygons

M | Memory required for the spatial data structure

Tp | Time requred to buid up the spatial data structure

Tr | Time requred for rendering itself

S1 | Speedup when using rope trees (rendering only)

Sy | Speedup when using rope trees (rendering and preparation)

Table 1: Meaning of the measured variables

5.1 Discussion

The results in Table 2 show that the ray—casting with rope trees is always faster.
The speedup varies from 1 to 8 percent and it is influenced by the size of the scene
and by the nature of objects’ materials. For the diffuse surfaces the speedup was
lower than for the specular surfaces. The price we have to pay for speedup is the
amount of memory required for the spatial structure. The memory requirements
is increased approximately eight times.

‘ Scene ‘ Np H Method ‘ M

~~

KB) [T) [T () [5 (0 [52 (4|

Octagon 10 BSP 1 0.01 | 137.05

Ropes 2 0.02 | 135.87 | 0.91 0.91
Cylinder 100 || BSP 4 0.05 78.37

Ropes 17 0.05 77.74 1.75 1.75
Cylinder 10000 | BSP 387 7.65 | 79.93

Ropes 2678 8.07 77.74 2.74 2.02
Teapot 3751 || BSP 231 3.28 | 70.76

Ropes 1857 3.54 | 64.68 8.55 7.86
Banana 4586 | BSP 336 5.05 | 66.20

Ropes 2753 541 | 61.54 7.04 6.04
Eagle 4684 | BSP 497 6.69 | 124.06

Ropes 3588 7.26 | 121.64 | 1.95 1.41
Small random | 10000 || BSP 109 230 | 81.74
triangles Ropes 834 2.40 | 76.05 6.96 6.65
Large random | 10000 || BSP 893 12.63 | 142.55
triangles Ropes 6630 13.88 | 137.12 | 3.80 2.69

6

We

Table 2: Results
Conclusions

have shown that the ray-scene intersection test is faster with rope trees. Al-

though the speedup is not very significant, it has some practical use especially for
large scenes with a lot of specular surfaces.

References

1]

2]

K. Iwata A. Fujimoto, T. Tanaka. ARTS: accelerated raytracing system. IKEFE
Computer Graphics Applications, 6:16-26, 1986.

A.S. Glassner. Space subdivision for fast raytracing. IKEE Computer Graphics
Applications, 4:15-22, 1984.

J. Salmon J. Goldsmith. Automatic creation of object hierarchies for ray trac-

ing. IKKE Computer Graphics Applications, 7:14-20, 1987.

M. R. Kaplan. The uses of spatial coherence in ray tracing, 1985. SIG-
GRAPH ’85 Course notes no 11.

S. J. Kingdon. Speeding up ray-scene intersections. PhD thesis, Univ Waterloo,
1986.

J. D. MacDonald and K. S. Booth. Heuristics for ray tracing using space
subdivision. The Visual Computer, 6(6):153-166, 1990.

[7] Robert F. Tobler. ART: Advanced rendering toolkit.
http://www.cg.tuwien.ac.at/research /rendering/ART/.

[8] J. Zara V. Havran, J. Bittner. Ray tracing with rope trees. In Proceedings of
13th Spring Conference on Computer Graphics. Comenius University.

