
Merging a set of polygons with non-stable borders

Gregor Klajnsek
gregor.klajnsek@siol.net

Laboratory for Geometric Modeling and Multimedia Algorithms
Institute of Computer Science

Faculty of Electrical Engineering and Computer Science
 University of Maribor

Maribor / Slovenia

Abstract

The paper introduces an algorithm dealing with polygons with non-stable borders. Such polygons
may appear because of measuring errors or during scanning and vectorisation of blueprints. The aim
of the algorithm is to remove these errors within prescribed tolerance. The algorithm uses a sweep-
line approach and works in two steps. In the first step, all non-stable areas are determined and in the
second step fixed.

Keywords: algorithms, computational geometry, polygons, non-stable areas.

1. Introduction

Polygons present basic geometric structures in many 2D applications. Perhaps the most important
are geographic information systems (GIS) where polygons represents piece of land considered as
parcels. It is reasonable to expect that the parcels fit completely together because in reality, there is
no overlapping or empty spaces between them. However, the borders of these parcels are obtained
by measuring with given tolerance. In reality this tolerance is +/- 12 cm. Because of this, it could
happen, that i n GIS database the borders of the parcels do not fit exactly together, especially if
different logical units are tried to be unified. The problem is even more difficult, if they have been
stored in different databases. In such cases, the borders of the parcels do not fit together entirely but
instead, they overlap or there are empty spaces among them. Such data represents real problems in
further operations on geometric data and therefore, they have to be corrected. Indeed, the corrected
polygons do not express the exact real data, but they are consistent within the given tolerance.

In this paper, an algorithm for detecting and eliminating described problem is considered. The
algorithm works in two steps: At first, by the use of a sweep-line, the borders of the polygons that
are not consistent are determined, and in the second step, they are corrected. Although practically
important, we have found no solution to presented problem in the literature.

2. Description of the problem

In Figure 1 an example set of polygons is s hown. Some of them are c onsistent regarding their
neighbours, while others are not. At first, the polygons, which are consistent, are merged together
and a smaller set of non-consistent polygons is obtained. Let us assume we already have a routine

performing merging. Here, just a brief idea is given. We have to eliminate all polygon edges, which
are doubled in the database. With the proper organization of data structures, this task can be finished
very fast. For example, Zalik reported that 100.000 polygons with 1.000.000 edges might be merged
in 38 seconds measured on an ordinary PC [1]. The reduced set of polygons is then obtained and it
is shown in Figure 1b. However, some vertices of those polygons are not consistent, this means, that
they are not adjusted with the vertices in the neighbouring polygons. Therefore, the edges are also
non-consistent and we c onsidered such po lygons as polygons with non -stable borders. Desired
result of merging is shown in Figure 1c and can be obtained by the process of “stabilization” of the
polygon bo rders. This process is described in the c ontinuation. For clarity, the a lgorithm i s
explained when just two polygons are presented, although the generalization to more polygons is
simple.

a) b) c)

Figure 1: Input set of polygons (a) Result of merging (b) Expected result of merging (c)

Let us determine the possible cases of instability, which may appear.
- Gap area. If the borders of two polygons are partially far way for less than prescribed tolerance

, but t hey do no t i ntersect, a tiny gap appears between the polygons (see Figure2a). To get
correct result gaps are filled by additional polygons that disappear during the merging process,
which is rerun after stabilization is complete.

- Intersection area. Figure 2b shows an example of intersection area. Again, additional polygons
are created at first, and then they are removed from the result.

- Combined are. This case includes gaps and intersection areas (Figure 2c). Again, additional
polygons are created and classified as gap or intersection areas.

a) b) c)

Figure 2: The cases of non-stable areas: gap (a) Intersection area (b) Combined area (c)

Obviously, the algorithm needs to know how wide the non-stable area could be. In reality, this is
connected with the measurement error. Here, we will denote it by a parameter called the -distance,

or shortly . Each po lygon, whose a ll edges are further apart t han , is not considered in this
algorithm. Indeed, such po lygons must be e liminated from t he process of non-stable a rea
determination as soon as possible.

3. Algorithm

As mentioned, the algorithm for fixing the non-stable areas works in two steps:
 Determination of non-stable areas
 Removal of non-stable areas.

These steps are described in the continuation.

3.1 Determination of non-stable areas

A sweep-line a lgorithm has been u sed for detecting non-stable a reas. The sweep-line a lgorithm
introduces a sweep-line moving from – to across the plane [2]. Let us suppose it is vertical. It
stops only at the event points - polygon vertices in our case. At the stop, the algorithm must update
so-called sweep-line status (SLS) and p erform some operations, if necessary. SLS contains all
polygon edges, which are intersected b y the c urrent sweep-line. These e dges are usually named
active edges [3]. Because, we have to handle non-stable edges, each edge being inserted into SLS is
prolonged for in x direction. When the sweep line hits a new event point the following actions are
executed:
- For each edge in SLS, at first the horizontal distances between its points and the event point are

determined. If both distances are greater , the edge is removed from SLS.
- The shortest Euclid d istances between the e vent point and all remaining edges in SLS are

calculated. If any distance is less then , the non-stable area is found.
- The edges which are connected with the actual event point and are not yet in SLS are inserted

into it (i.e. the second vertex of these edges has x coordinate larger than x coordinate of the
event point).

To ensure that t he sweep-line a lgorithm works correctly, all polygon v ertices have to b e sorted
regarding their x coordinate.

Let us highlight the algorithm by an example shown in Figure 3. For this purpose, let us observe
what happened in individual event points.

0 0 0 1

0 2

0 3
0 4

1 0 1 1

1 21 3

1 4

S 0 S 4S 3S 2S 1 S 5 S 6 S 7 S 8

-distance

Figure 3: Determination of non-stable areas

Sweep line S0: Vertex 00 is detected. As SLS is empty, edges 0001 and 0004 are added into sweep
line status.

Sweep line S1: Sweep line stops at vertex 0 4. Horizontal distance between the right end of all
edges in SLS and vertex 04 is calculated. As no horizontal distance is greater then all edges remain
in SLS. As edges 0004,0001 and vertex 04 belong to the same polygon, calculation of Euclid distances
between the vertex and the edges is skipped. Edge 0304 is added into SLS.

Sweep line S2: Horizontal distance between vertex 03 and the right end of edge 0004 is greater then
-distance. Therefore, edge 0004 is erased from SLS. Other edges in SLS have smaller horizontal

distances then and remain in SLS. All edges s till belong to the same polygon and no o ther
calculations have to be done. Edge 0203 is added into SLS, which now consists of edges 0001, 0304,
and 0203.

Sweep line S3: Sweep line stops in vertex 01. After calculation of horizontal distances, edge 0403

is removed from SLS, after that edge 0102 is added to SLS.

Sweep line S4: Sweep line hits point 10. After calculation of horizontal distances, between edges
in SLS and vertex 1 0, edge 0304 is removed from SLS. Edges in SLS belong to polygon P0, while
vertex 10 belongs to polygon P1. Because of this, we have to calculate Euclid distances between the
vertex and the edges. Distances from edges 0001 and 0203 to vertex 10 are greater than and therefore,
these edges are ignored. But, the distance between the edge 0102 and the vertex 10 is smaller then
indicating that the non-stable area has been entered. For the next step o f the a lgorithm available
information about non-stable area is stored. Up to now we know, that edge 0102 and vertex 10 belong
to this area. After that, edges 1011 and 1014, which derive from vertex 10 are added into SLS.

Sweep line S5: Edge 0001 h as horizontal distance to v ertex 0 2 g reater then and therefore is
removed from the SLS. As vertex belongs to polygon P0, Euclid distances between vertex 0 2 and
edge 1011 and 1014 are determined. The distance between vertex 0 2 and edge 1011 is greater than ,
and therefore edge 1011 does not fall into non-stable area. On the other hand, because the distance
between the vertex 0 2 and edge 1014 is smaller then it falls into non-stable area. As vertex 0 2 is
already in the data structure describing non-stable areas, only additional information just found is
added (edge 1014).

Sweep line S6: Edges 0102 and 0203 are removed from SLS, as their horizontal distance to vertex
14 is greater then . All remaining edges in SLS and vertex 14 belong to polygon P1 so determination
of Euclid distances is skipped. Edge 1314 is added into SLS, which now consists of edges 1011,1014,
and 1314.

Sweep line S7: Edge 1014 is deleted from SLS. Determination of Euclid distances is skipped and
edge 1213 is added to SLS.

Sweep line S8: Sweep line hits vertices 11 and 12. After horizontal distance is calculated all edges
remain in SLS. Edge 1112 is added into SLS.

For described example, the sweep line algorithm produced following sets of data describing non-
stable areas:

List of non-stable polygons: {P0,P1}
List of non-stable borders: {0102,1014}
List of non-stable vertices: {01,02,10,14}

3.2 Removal of non-stable areas

In this step, the algorithm constructs the additional polygons obtained from the information about
the non-stable a reas. As we a lready kno w, three possible ca ses exist: gaps, intersections and
combined non-stable areas. How they are constructed is described in the continuation.

3.2.1 Fixing gap areas

A polygon describing a gap consists of all t he edges s urrounding the gap and two additional
edges, which must be determined to close the polygon. The creation of the new polygon follows the
next algorithm:
- The set of non-stable-borders is split into two sets. In one set are a ll edges, which belong to

polygon P0 and in the second are edges belonging to polygon P1.
- The left and the right chain have to be determined. After that, the end edges of the non-stable

area are determined.
- Four perpendicular lines regarding to the end edges are constructed. From t hese, two, which

actually intersect the edges on the opposite chain, are chosen. An intersection point between the
perpendicular line and the corresponding edge is calculated. The intersected edge is then split
and a new edge connecting the intersection point with the end vertex on the corresponding chain
is generated.

- New polygon is constructed in this way and it fills the gap.

Let us consider the example in Figure 4a:
From the data structure filled in the first part of the algorithm, the sets of edges are obtained.

Using the information from the input polygons, two chains are constructed. The left chain consists

of edges 0102, 0203, and 0304, and the right chain of edges 1016, 1615, and 1514. Let us consider now
just the “upper” pair of edges of both chains – edges 0102 and 1016. From the ending points of both
chains (in our case from the vertices 01 and 10), two perpendicular lines are calculated. Let us denote
them as rleft and rright. These lines are shown in Figure 4b. It happened, that rright intersects left edge
0102. At the intersection point, edge 0102 is split and a new vertex V0 is obtained. This vertex is then
connected with the ending vertex of the right chain (vertex 01). Similarly, the algorithm solves the
“bottom” part of the chains.

In Figure 4c the result of the merging operation, polygon Pm, after addition of the new polygon is
shown.

0 0

0 3

0 5

0 2

0 1

0 6

0 4

1 5

1 4

1 3 1 2

1 11 0

1 6

0 3

0 2

V 0

0 4

1 5
V 1

1 0

1 6

0 2

0 1

1 0

1 6

V 0

a)

b) c)

P 0

P 1 P 2

P m

r left

r right

Figure 4: Set of polygons forming the gap area (a) Determination of additional edge (b) Final result
of merging, after the “stabilization” (c)

3.2.2 Fixing polygon intersections

 Two po lygons, which intersect are transformed into three polygons. One polygon fits the
intersection area. The intersection area is subtracted from the original polygons to obtain other two
polygons. The creation of these three polygons follows the next algorithm:
- The set of non-stable-borders is split into two sets. In one set all edges belonging to polygon P0

are located and in the second are edges belonging to polygon P1.

- The left and the right chain have to be determined. After that, end edges of the non-stable area
are determined.

- Intersection po ints between the e nd edges are ca lculated. These intersection po ints s plit end
edges. All parts of end edges, which are not in the intersection area, are taken from the chains.

- All edges, which have remained in both chains, form the polygon, which fits the intersection
area.

- The chains belonging to P0 and P1 are swapped and in this way polygons P0 and P1 are modified.

Let us highlight the algorithm using an example in Figure 5a:
From the data structure filled in the first part of the algorithm, two chains are constructed One chain
consists of edges 0102, 0203, 0304, 0405 and 0506 and the second chain from edges 1015, 1514, 1413, 1312

and 1 211. From the end edges of both chains, two intersection points are determined. Vertex V0,
represents intersection point between edges 1015 and 0 102 and vertex V1 is the in the intersection
point of edges 0506 and 1211. Edge 0102, is split into two edges 01V0 and V002, and edge 1510 is split
into edges 15V0 and V010. As new edges 01V0 and V010 are outside the intersection area, they are
deleted from the chains. Similarly, removal of the edges is performed at the “bottom” of intersection
area. Now the right chain consists of edges V002, 0203, 0304, 0405, and 05V1 and the left chain consists
of edges V015, 1514, 1413, 1312 and 12V1. These chains now form the polygon P2. Chains are swapped
to modify the polygons P0 and P1. Polygons P0, P1 and P2 are shown in Figure 5b.

0 0

0 3

0 7

0 5

0
2

0 1

0
6

0
4

P 0 P 1 P 0 P 1

P 2

1
5

1 4

1
3

1 2 1 1

1
0

a) b)

0 0

0 7

0 1

0
6

1
5

1 4

1
3

1
2

0 3

0 5

0
2

0
4

1 1

1
0

0 3

0 5

0
2

0 4

1
5

1 4

1
3

1 2V
1

V 0

V 1

V
0

V 1

V 0

V
0

Figure 5: Set of intersecting polygons (a) Constructed set of consistent polygons (b)

3.2.3 Fixing combined areas

Combined areas consist of gap and intersection areas. All t he gap areas must be c overed with
additional polygons, and the intersection areas have to be subtracted from the original polygons.
New polygons fitting intersection areas must be c onstructed. The a lgorithm i s described in
continuation:
- The set of non-stable borders is split in two sets and the chains are determined.
- Two corresponding end edges are chosen as starting edges.
- If starting edges cross, the first area is intersection area, and the intersection point is determined.

If end edges do not cross, first area is the gap area and additional edge is created.

- A walk-about is performed along the edges in chains, until the next intersecting edges are found
or end of chains is reached. At each detected intersection point, the chains are split. If there are
no intersecting edges, the algorithm jumps to the last step. Otherwise, the intersection point is
determined, and the intersecting edges are split. New polygon is created from partial chains. If
algorithm is fixing the intersection area partial chains are swapped in the original polygons, too.
The partial chains are then removed. As gap area always follows the intersection area and vice-
versa, the classification of next area is simple. The process is repeated until the algorithm deals
with all edges.

- If the last two edges, do no t intersect we have the gap at the “end” of intersection area. The
additional edge is determined and a new polygon is formed from partial chains and the new
edge.

Let us consider the example in Figure 6a:
From the data structure filled in the first part of the algorithm, two chains are constructed One

chain consists of edges 0102, 0203, 0304, 0405 and 0506, and the second chain contains edges 1017, 1716,
1615 and 1 514. Edges 0102 and 1 017 are chosen as s tarting edges. As these edges do not i ntersect,
additional edge 01V0 is formed.

Next i ntersecting edges are e dges are e dges 0203 and 1 017. At t heir intersection, v ertex V1 is
created, which splits both edges. “Upper” parts of edges are added to the partial chains. One partial
chain now consists of edges 0102 and 0 2V1 and the second of edge V0V1. These partial chains and
edge 01V0 form the polygon P2 which fills first gap area.

The next stop is intersection of edges 1716 and 0304. At their intersection new vertex V2 is created
which splits the edges. One partial chain consists now of edges V103 and 03V2 and the second from
edges V117 and 1 7V2. The partial chains form polygon P3, which covers the intersection area. In
polygons P0 and P2 chains between vertices V1 and V2 are swapped and polygons are updated.

Polygon P4 is formed from partial chains V204, 04V3 and V216, 1 6V3. As polygon P4 fills the gap
area, polygons P0 and P1 are not modified.

Polygon P5 fits the last i ntersection area. It consist of chains V315, 1 5V4 and V305, 0 5V4. In
polygons P0 and P1 chains between vertices V3 and V4 are swapped.

The final result of the algorithm are polygons P0 (consisting of edges 0001, 0102, 02V1, V117, 17V2,
V204, 04V3, V315, 1 5V4, V406, 0 607, and 0700), P1 (consisting of edges 1011, 1 112, 1213, 1314, 1 4V4, V405,
05V3, V316, 16V2, V203, 03V1, V1V0, and V010), P2, P3, P4, and P5. All polygons are shown in Figure 6b.

0 0

0 3

0 7

0 5

0 2

0 1

0 6

0 4

P 0P 1

1 5

1 4

1 3

1 2

1 1

1 0

1 7

1 6
P 1

P 2

P 3

P 4

P 5

V 0

V 4

V 3

V 2

V 1

P 0

a) b)

Figure 6: Set of polygons forming a combined area (a) Constructed set of consistent polygons (b)

4. Conclusions

The paper presents an algorithm for correcting the polygons with non-stable borders. As described,
such po lygon easily appears at engineer practice, where polygons are obtained by some
measurements s ubjected to measuring errors. We mention geographic information systems as an
example. The algorithm presented here works in two steps: at first so-called non-stable areas are
determined and in the second step, the a dditional artificial (blind) polygons are c reated. To
accelerate the first step, a sweep-line algorithm is proposed. The second step handles three different
cases how to construct these additional polygons.

The algorithm is being implemented at the time of writing. We hope that the implementation will
confirm the correctness of the proposed algorithm.

5. References

[1] Zalik, B.: An Incremental Randomized Approach to the Envelope Determination of a Huge
Set of Topologically Consistent Polygons, paper sent to ACM ToG.

[2] Preparata, F. P., Shamos, M. I.: Computational geometry - an introduction, Springer-Verlag,
New York, 1985.

[3] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.: Computational geometry
– Algorithms and Applications, Springer, Berlin, 1997.

