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Abstract 

One a pplication of surface-oriented visualization of volume data is the c onstruction of surfaces 
between two different regions of the volume (e.g. iso-surfaces). For some a pplications, a binary 
subdivision of the volume is not sufficient, for instance for the representation of basin boundaries in 
the phase space of dynamical systems. Basins describe regions with the same long-time behaviour. 
An extension of the known Marching Cubes algorithm is introduced, which works both with binary 
and g enerally classified (at least t hree different classifications within a ce ll) data sets. For faster 
surface c onstruction the original l ook-up table of the Marching Cubes algorithm i s used. The 
algorithm supports both progressive refinement of surfaces by binary subdivision of data cells and 
smooth transitions between models, which are differently refined. The adaptive subdivision depends 
on the local properties of the surface. Binary subdivision for refinement of regions leads to a coarse 
representation of the surface, therefore the vertices of the triangles are relocated after the surface 
construction depending on the classifications of adjacent cells, in order to smooth the surface. 
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1. Introduction 

An application of surface-oriented methods for volume visualization is the visualization of surfaces 
separating distinct regions of the volume. This technique is mostly based on binary classification of 
data samples in an inside a nd outside part by an iso-value, i.e. the separation of data sets by a 
surface into two different regions depending on a c lassification. But t here a re a lso applications 
where the c lassification into more than two different regions (general classification) is required. 
Nielson et al. [16] mention the segmentation of different t issues or organ classes for medical 
applications or materials classified by properties like solid, liquid or gas for physical simulation. A 
visualization of more than two different regions is also required for the exploration of boundaries 
between b asins within dynamical systems, for example the system discussed by Agiza e t al. [1]. 
This application is the main motivation for the presented p roject, but t he surface e xtraction 
technique can also be applied to o ther data sets with a binary or general classification. The basin 
boundaries of a dynamical system can b e c onsidered as s urfaces, which separate regions with 
different long-time behaviour [ 17]. The problem with dynamical systems in this context is an 
expensive c lassification function (iteration of a trajectory) and that t hese c lassifications do not 
support further information about the position of the boundary. 

Following requirements for basin boundary visualization can be listed: 

• Fast surface construction for generally classified regions [4, 11, 16] 



The surface c onstruction h as to be fast both for binary and g enerally classified regions. The 
construction should only have local influence to support progressive refinement, since new points 
are gradually inserted. 

• Adaptive and efficient model representation [3, 10, 13, 15, 18, 24] 

Because of expensive c lassifications we have to use a representation with as few as possible 
classified points, i.e. we use more points for regions with a higher level of detail and fewer points 
for r egions with a small level of detail. Further we have to store and reuse classified points. The 
classification and the surface model have to be stored in a compact way, because of the expected 
high amounts of data. 

• Selective and smooth progressive refinement 

We have to provide the possibility of selection criteria for progressive refinement and a high 
number of intermediate representations. For the selective refinement t he user is able to choose a  
region of interest by the actual view direction. The selected region is first considered for refinement 
and is visualized with a higher level of detail than its surrounding. Other regions are considered, if 
the refinement of the selected region to the currently highest level of detail is finished. 

• Web-based interactive application [7, 8, 9, 14] 

The use of the Internet is also connected with a limited bandwidth for data transmission, so we have 
to reduce the data required to describe a model as far as possible. Therefore a c ompact data 
representation for the transmission is necessary and only the changes between different models with 
increasing level of detail are transmitted. 
 
The basin v isualization is implemented in the platform-independent programming language Java 
(JDK 1.2) with its 3D-extension Java 3D (Java 3D 1.1.1 Beta 1 for Direct X) which can be used for 
providing 3D-graphics over the Internet [20]. 

2. Surface Extraction 

There a re only few approaches for the visualization of generally classified d ata sets. These 
approaches are not adequate for our application b ecause of a subdivision of generally classified 
cells in many sub cells for a generalized Marching Cubes [11] or the use of tetrahedra for the 
surface construction in [4, 16]. Therefore a modified Marching Cubes algorithm [6, 12] is used. The 
progressive refinement is realized by a subdivision of a c ube into 8 equally sized sub cubes. 
Different levels of detail are e xtracted d epending on the local curvature by different subdivision 
depths. 
The visualization of generally classified regions requires also double-sided triangles with different 
front and back side c olors. Double-sided triangles can b e implemented with Java 3D using two 
triangles with opposite normal vectors, opposite vertex order, activated backface c ulling and 
different colors. 

2.1  Binary Classified Cells 

The original Marching Cubes algorithm classifies the eight vertices of a cell depending on their data 
value a nd an iso-value a s inside (0) and outside (1). Every differently classified edge of a ce ll 
contains an intersection point. The intersection points are points of the surface, which have to be 
connected for triangulation. Exploiting symmetry 15 basic ca ses can b e identified out of 256 
possible classifications of the 8 cell vertices. The 15 cases can be stored in a fast look-up table. The 
exact position of a point on an intersected edge is calculated by linear interpolation between the two 



vertices using iso-value. The normal vector on a surface point is calculated u sing central 
differences. The Marching Cubes algorithm i s reused for binary cells (exactly two different 
classifications within a ce ll) with some modifications. For the c lassification of a vertex the 
classification function is used, which returns which basin a point belongs to. As only classification 
information is available, we can also not calculate the position of the surface point and the normal 
vector with the original methods. The position of a point is always located in the middle of an edge, 
since we have no information about t he e xact position from the surrounding classifications. This 
leads to coarse surfaces, which can be improved with surface smoothing. A more accurate position 
of a surface point can be e stimated by checking the c lassifications along an edge, but it is more 
costly. The normal vector of a point is calculated from the location of the corresponding triangle, 
resulting in a single normal vector per triangle. This is sufficient information for flat shading, which 
is also sufficient for the basin boundary visualization. 

2.2  Generally Classified Cells 

For the triangulation of generally classified cells (more than two different classifications within a 
cell) the cell is disassembled into several binary classified cells. These binary cells contain only ver-
tices with identical and adjacent classifications from the general cell, the remaining vertices are 
assigned to a so-called not defined region. These binary cells are independently triangulated with 
the modified Marching Cubes algorithm. The triangulation of a general cell is the combination of 
the triangulations of its binary dissection. This triangulation approach for generally classified cells 
raises the problem of not defined regions and duplicate triangles. Not defined regions are visible at 
lower resolutions, but are nearly invisible at higher resolutions. On the other hand their appearance 
informs the user, that more detailed information on the junction of several regions is not available. 
The duplicate triangles are caused by opposite but similar Marching Cubes cases at t he boundary. 
The duplicate triangle has to be removed and the colors of the opposite triangle have to be updated. 
The advantages of this method are a fast surface construction because of the reuse of the Marching 
Cubes look-up table and its simplicity. Figure 1 shows an example for the surface construction of a 
generally classified cell with the modified Marching Cubes. The example leads also to a duplicate 
triangle. 
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Figure 1  Example of general triangulation with duplicate triangle 



2.3  Surface Smoothing 

The results of the modified surface extraction are coarse, since the vertices are always located in the 
center of an intersected edge. The shape of the surface around a vertex is influenced by the positions 
of other vertices. Therefore a vertex can be relocated depending on the surrounding classifications. 
A vertex on an intersected edge is influenced by the vertices in cells sharing this common edge. 
Parallel edges have only a small influence, because they do not attract connected triangles (Figure 
2a). Orthogonal edges attract t riangles in their direction and cause higher curvature a t t he 
considered vertex (Figure 2b). This attraction has to be compensated in order to get a smoother 
transition. Therefore the vertex is shifted in the direction of an intersected edge. Two intersections 
in different directions neutralize each other, since every intersection is connected with relocation in 
its direction (Figure 2c). Each edge is connected with 4 cells and is influenced by 8 edges, 4 in 
positive and 4 in negative direction. The shift for an edge is relative to the sum of the intersections 
with a sign depending on their direction. The shift for an edge can also be scaled by a user-definable 
factor in order to adjust t he influence. This approach is a fast and simple method to smooth the 
surface influenced by the surrounding classifications. 
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Figure 2  Principle of Surface Smoothing 

3. Adaptive Surface Representation 

The specified requirements like a daptive representation and p rogressive refinement are supported 
by an octree as a hierarchical data structure. An intermediate node with 8 child nodes represents 
every subdivision. The root node represents the whole data set as a cube. Therefore we have to 
transform the data set, since it has usually not the same extent in all dimensions. The data set, which 
has to be continuously defined in the domain, is transformed by scaling and translation into a cubic 
domain with the range 0 to 2n. This domain makes both an easier subdivision and a fast calculation 
with just integer arithmetic instead of f loating p oint possible. The c ubic domain is used for the 
whole work within the octree like subdivision, surface construction, surface smoothing and so o n. 
The domain is transformed into a domain with the original size relations for r endering. For effi-
ciency the octree is replaced by an octree forest t o achieve a minimum starting subdivision and in 
order to avoid the traversal of these first levels. The octree forest is a three-dimensional array 
(currently 8 8 8) with references to the corresponding root nodes of shorter octrees. 
The c lassifications of the vertices have to be stored for r euse, because of expensive classification 
functions. The storage in an array is inefficient, because of the adaptive representation. Therefore 
the classifications are stored within the cell in a compact way. For efficiency several types of leaf 
nodes are distinguished. There are simple and complex leaf nodes. A simple leaf node has the same 



classification at all vertices and contains therefore no surface. Most of the leaf nodes are simple leaf 
nodes and can be stored with only one c lassification. A complex leaf node c ontains at least t wo 
different classifications and therefore a  p art of the surface. A complex n ode ca n b e further 
subdivided into binary and g eneral leaf nodes. A binary (leaf) node contains exactly two different 
classifications, so we can store them with just t wo classifications and the corresponding Marching 
Cubes case index. All classifications have to be stored just for the general node with at least t hree 
different classifications. A complex node stores also a surface index to the triangles constructed 
within the ce ll for later r eplacement during p rogressive refinement. The distinction b etween 
different leaf node types results in b ig savings, since usually at least 90% of the leaf nodes are 
simple or binary leaf nodes. 
Simple nodes are not further r efined, since this would u sually only result in more simple nodes. 
This method leads to savings because of fewer subdivisions and less memory consumption, but also 
to missed surface parts. Missed parts of a continuous surface can be found by surface tracking. For 
surface tracking all simple neighbours of a newly subdivided cell are checked. If a considered cell 
has an intersected edge, which is adjacent t o the c hecked simple ce ll, also the simple ce ll must 
contain this intersection point and a surface part. Therefore such simple cells are subdivided until 
they have the same size as the considered cell. This method is restricted to surface parts, which are 
connected to surface parts already found, which is in most cases sufficient. 
A drawback of an octree is a difficult or expensive acce ss to neighbour cells of the c urrent 
processed region. Therefore the leaf nodes of an intermediate node of the octree are stored in a 
three-dimensional array, which works like a cache for leaf nodes in a part of the octree. Every entry 
of the array refers to the corresponding leaf node. The number of entries for a leaf node depends on 
its size, therefore larger cells are represented by more entries than smaller ones. Further for every 
cell the reference point within an octree, the cell size respectively octree depth, the parent node and 
the c hild index are stored. This information is implicitly stored in the octree a nd can only be 
determined by an expensive traversal. The selection of the size of this array is essential for the 
efficiency, since only a part of the octree can be held in this cache. Therefore the a rray size is 
chosen to correspond to a progressive unit, an entity used by this approach for progressive 
refinement. 

3.1  Adaptivity Criteria 

The goal of the adaptive representation is to represent sections with a level of detail, which depends 
on the local shape (curvature) of the surface. Therefore fast heuristic curvature estimation is used as 
well as consistency criteria, which guarantee a simple and fast triangulation and connection between 
adjacent cells with different sizes. 

3.1.1  Heuristic Curvature Estimation 

A more e xact calculation of the c urvature is expensive, because we have to calculate the a ngles 
between normal vectors of triangles of the investigated and adjacent cells. The curvature of the cell 
is related to the angle between own and adjacent t riangles. This principle is reused, but every cell 
has only one representative normal vector. The curvature is now estimated by the minimum angle 
between the representative normal vectors of the c onsidered and the a djacent cells. The 
representative normal vector of a cell is the average or normalized sum of the normal vectors of the 
vertices. The normal vector of a vertex is calculated by the technique for discrete surfaces from 
Th rmer et al. [21]. Vertices belong to the same surface, if they have the same classification and are 
not separated by other classifications. 

3.1.2 Consistency Criteria 



The c onsistency criteria guarantee a simple and fast connection between cells with different sizes 
and a c ompact representation, since this is a c ommon problem for all adaptive a pproaches. The 
criteria do not have to be c onsidered for cells, which have only direct neighbours with the same 
size, since a valid triangulation is possible with the Marching Cubes algorithm. For the check of the 
consistency criteria the 6 faces of a ce ll are c onsidered. The different parts of a ce ll face with 
smaller neighbours are shown in Figure 3. 

Face Sub face Inn er ed ge Border ed ge  

Figure 3  Face part designation of a cell face with smaller neighbours 

A non-empty cell has to be subdivided, if any of the following rules is met. 
• The depth difference between the cell and a non-empty edge neighbour is larger than 1. 
• The cell cannot be triangulated neither with the Marching Cubes algorithm nor as an adaptive cell. 
• The faces of the cell contain more than two different classifications. 
 
A cell is valid for Marching Cubes triangulation, if all faces 
• contain no intersection point at an inner edge. 
• contain at most one intersection point at each border edge. 
 
A cell is valid for adaptive triangulation, if all following rules are met. 
• At most 4 faces of 6 have intersection points. 
• Every inner or border edge contain at most one intersection. 
• Every face contains either 2 or no intersections at border edges.  
• Every sub face contains either 2 or no intersections. 
 
The task of the adaptive triangulation is to connect t he surfaces of adjacent cells, if the Marching 
Cubes algorithm cannot be applied. The closest intersection points on the faces of such a cell are 
connected in order to obtain a contour. The consistency criteria guarantee a closed contour, so the 
contour can b e ea sily triangulated for surface c onstruction. Figure 4 shows an example of an 
adaptive triangulation of a cell with smaller neighbours. 

a) C heck valid  
    in tersec tion points

b) C on tour of in te rsection
    po in ts for storage

c) Trian gulation o f con tou r
     fo r rende ring
    Trian g le strip: 0 1  6 2 5 3 4

00

11

44

66

33

55

22

 

Figure 4  Example of an adaptive triangulated cell 



3.2  Progressive Refinement 

The principle of the progressive refinement is to generate intermediate models with increasing level 
of detail for viewing du ring the c reation of more acc urate data. The progressive refinement is 
supported by a successive subdivision and an adaptive representation. There a re two combined 
types of progressive refinement, smooth and selective refinement. Smooth refinement generates 
many different models with different levels of detail in order to make smooth transitions between 
the models possible. The selective refinement chooses a new region in the octree for the next 
refinement depending on the c urrent view direction. All changes in this s ection, the so-called 
progressive unit, and in adjacent cells are transmitted in one update. The progressive unit is a cube, 
which corresponds to an intermediate node of the octree. 

3.3  Efficient Geometry Representation for Storage and Transmission 

The task of the geometry compression is a c ompact representation of the geometry. Geometry 
compression is usually lossy like in [5, 19, 22]. The discrete positions in the octree and the limited 
number of positions of intersection points within a cell make a lossless and compact representation 
for efficient storage and transmission possible. A vertex within a Marching Cubes cell can be stored 
in a compact way using the edge identifier, because there are only 12 edges within a cell (4 Bits). 
There a re a lso 5 Bits necessary to store the shift (32 p ositions) of a vertex on the e dge. The 
triangulation of a Marching Cubes cell can be stored with 7 Bytes (51 Bits) for the cell information 
and 5 Bytes (35 Bits) per triangle. The ce ll information consists of the ce ll position, the size 
respectively octree depth and the front and back side c olor. If we represent t he triangles by its 
vertex positions then we need 38 Bytes per triangle for coordinates stored as floating point numbers 
or 20 Bytes per triangle for short (2 Bytes) numbers. 
The compression can be further improved if we distinguish the compression of binary (2 d ifferent 
classifications) and g eneral cells (more than 2 d ifferent classifications). For binary cells just one 
front and back side color has to be stored per cell. For general cells one front and back side color 
has to be stored per triangle. Similar savings can be achieved with adaptive triangulated cells. There 
are no normal vectors compressed or transmitted, since we calculate them from the location of the 
corresponding triangle at the client. 

3.4  Surface Construction Algorithm 

The following pseudo code describes the principle of the surface construction and all its connected 
techniques. Details about t he techniques are described in the previous or following sections. The 
desired level of detail is controlled by a maximum number of subdivisions. 
 
Initialize octree; 
WHILE (true) 
BEGIN 
 IF (all progressive units refined) 
 BEGIN 
  IF (desired level of detail) stop refinement; 
  ELSE restart refinement; 
 END 
 ELSE select progressive unit depending on view direction; 
 
 FOR (all leaf nodes within progressive unit) /* Refinement */ 
 BEGIN 
  IF ((leaf node is general node) OR 
    ((leaf node is binary node) AND 
     (curvature(leaf node) >= maximum curvature)) 
  BEGIN 
   subdivide leaf node; 



   surface tracking in non-empty children of subdivided leaf node; 
   check consistency with neighbours; 
  END 
 END 
 
 FOR (all leaf nodes within progressive unit) /* Surface extraction */ 
 BEGIN 
  surface construction within leaf node; 
  surface smoothing within leaf node; 
  if (leaf node is on the edge of the domain) 
  BEGIN 
   construct domain boundary part from leaf node; 
  END 
 END 
 transmit the symbolic surface representation of changed cells; 
END 

4. Domain Boundary & Cutting Plane Preview 

The domain boundary visualizes the basins on the surface between the inside and the outside of the 
specified data domain. The domain boundary can be considered as the cutting planes at the 6 faces 
of the cube represented by the root node of the octree. For the construction of the domain boundary 
the ce ll faces of leaf nodes at t he border of the octree a re used. A quadtree is used in order to 
combine smaller homogeneous faces for an adaptive representation also of heterogeneous cells. The 
domain b oundary provides a better overall view of basins, since it shows also the first region 
corresponding to the c urrent viewing d irection, which cannot be recognized because of double-
sided surfaces. 
The exploration of data sets makes it also necessary to generate two-dimensional intersections with 
cutting planes. The creation of cutting planes is expensive, therefore a fast cutting plane preview is 
supported for the selection of desired intersection locations. The preview for orthogonal cutting 
planes is constructed from the classifications in the octree. The advantages are a reuse of expensive 
classifications and an adaptive representation of homogeneous regions. For the c onstruction leaf 
nodes are used which are intersected by the cutting plane. The classifications of the closest vertices 
are projected onto the cutting plane. The influence of a classification on the cutting plane depends 
on the c orresponding cell size. A classification has more influence in larger cells than in smaller 
ones. 

5. Web-Based Application 

The basin visualization is designed to support also the application over networks like the Internet. A 
surface-oriented approach is used instead of direct volume rendering, so the geometry have to be 
only once constructed and transmitted for a data set. Since the approach is view-independent no 
further information h ave to be transmitted over the network, if the view point changes. The 
progressive refinement of the approach makes also an early, low-resolution preview of the results 
possible. During p rogressive refinement only parts of the geometry have to be c hanged, so o nly 
these changes have to be transmitted. The normal vectors of triangles do not have to be transmitted, 
since they can b e ca lculated from the position of the triangles. The normal vectors have to be 
calculated at the client, which is a drawback at slow clients. The network traffic can also be reduced 
by the compact, symbolic representation of the geometry. It has the same drawback as the savings 
from the normal vector calculation, since the calculation of the necessary geometry representation 
has to be performed at the client. 



6. Results 

Image 1 shows the presented surface extraction applied on the dynamical system Game3D [1]. The 
smaller basins are opaque and the larger surrounding basins are transparent displayed. 

      

Image 1  Results of the surface extraction for dynamical system Game3D with different parameters 

Image 2 shows the surface extraction without and with activated surface smoothing for an artificial 
data set. The resulting smoothed image is not completely correct, but it is a fast approximation. 

       

Image 2  Artificial data set without and with surface smoothing  

Image 3 shows the second d ynamical system of Image 1 with a smaller function domain and a 
transparent and an opaque domain boundary. 



       

Image 3  Transparent and opaque domain boundary for dynamical system Game 3D 

Image 4 shows a preview of a cutting plane through the dynamical system Quad3D, which is from 
the authors of Game3D. The preview is much faster than a calculation of the cutting plane with the 
same resolution. 

     

Image 4  Preview and original cutting plane of dynamical system Quad3D  

7. Conclusions 

For boundary visualization of generally classified regions a modified Marching Cubes algorithm as 
surface e xtraction technique was introduced. For triangulation generally classified cells are 
subdivided into several binary cells. The surface construction is fast, because of reusing the original 
Marching Cubes look-up table. A surface smoothing method is used to smooth the coarse Marching 
Cubes surface, which is caused by the selection of triangle vertices in the center of an edge of a cell. 
An octree is used for adaptive representation of homogeneous s ections of the data sets. 



Classifications evaluated at cell vertices by an expensive c lassification function are stored in the 
octree in a compact way. For a better overall view of the visualization the boundary at the border of 
the octree is constructed. The octree is also used to construct a fast preview of an intersection of an 
arbitrary orthogonal cutting p lane with the data set in order to select interesting locations for a 
cutting p lane. Further information about t he basin v isualization project is available a t 
http://www.cg.tuwien.ac.at/~wallisch/da/. 
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